Read this manual carefully before starting to install the battery system. Keep these instructions for future reference.
Important Safety Instructions

Read and follow these instructions!

The following precautions are intended to ensure your safety and prevent property damage. Before installing this product, be sure to read all safety instructions in this document.

<table>
<thead>
<tr>
<th>DANGER</th>
<th>Failure to comply with the instructions with this symbol may result in a serious accident, causing death or severe injury.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING</td>
<td>Failure to comply with the instructions with this symbol may result in a serious accident, causing severe injury.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>Failure to comply with the instructions with this symbol may result in minor or moderate injury.</td>
</tr>
<tr>
<td>NOTICE</td>
<td>Provides information considered important but not hazard-related. The information relates to property damage.</td>
</tr>
<tr>
<td>Important</td>
<td>Indicates valuable tips for optimal installation and operation of the product.</td>
</tr>
</tbody>
</table>
General Instructions

Be aware that a battery presents a risk of electric shock including high short-circuit current. Follow all safety precautions while operating the batteries.

- Remove watches, rings, and other metallic items.
- Use tools with insulated handles to avoid inadvertent short circuits.
- Wear rubber gloves and safety boots.
- Do not put tools or any metal parts on the top of the batteries.
- Disconnect the charging source and load before connecting or disconnecting terminals.
- Use proper lifting means when moving batteries and wear all appropriate safety clothing and equipment.
- Batteries must be handled, transported and recycled or discarded in accordance with federal, state and local regulations. Do not dispose of the batteries in a fire because they can explode.
- Do not open or mutilate the batteries.
- Only authorized, properly trained and qualified technicians should perform maintenance.
- Only qualified personnel who are familiar with the batteries and safety precautions should install or maintain the battery system.
- Do not allow unauthorized personnel to contact the batteries.

Safety Precautions

The following precautions are general safety guidelines that should be followed when working with or near the Energy Storage System (ESS). The user should develop complete, site-specific safety parameters and procedures.

- Review and refer to all safety warnings and cautions in this manual before installation.
- Build a clear, permanent, restricted access area around the system.
- Only authorized, properly trained electrical operators should be able to access the system.

The interior of this equipment must be considered a “no-go area except for qualified personnel who are familiar with the batteries and safety precautions.” Consult local codes and applicable rules and regulations to determine permit requirements. If required, mark enclosures appropriately before beginning work.
Personnel and Equipment Warnings

Personnel in contact with the battery system should be aware of the following hazards:

WARNING—SHOCK HAZARD
Do not contact system connectors or terminals. Do not open the enclosure doors unless proper lock out and tag out procedures and related trainings are followed in accordance with local codes and regulations.

WARNING—ARC FLASH HAZARD
All electrical equipment presents an arc flash hazard. There is a serious risk of arc flash relating to any equipment modification, such as opening doors. Serious injuries can occur in arc flash incidents. Appropriate training is required in accordance with local codes and regulations.

WARNING—FIRE HAZARD
Certain faults may cause a fire.
In case of fire involving electrical equipment, use only carbon dioxide fire extinguishers or those approved for use in fighting electrical fires.

CAUTION—PINCH POINTS
Multiple pinch-points are present in most system components. Be aware that there is a serious risk of injury while working around and in equipment enclosures.

CAUTION—STATIC SENSITIVE
Electronic devices can be damaged by electrostatic discharge. Proper handling procedures are required. Be sure to wear a grounded anti-static wrist strap and to discharge static electricity by touching a grounded surface near the equipment before touching any system components.

Dangerous Voltages

DANGER
The Electrical Storage System (ESS) is powered by multiple power sources. Hazardous voltages may be present in the equipment even when it does not appear operational. Make sure that you completely understand the cautions and warnings in this manual. Failure to do so may result in serious injury or death. Follow all manufacturer-published safety procedures. Electrical equipment can present a risk of electrical shock and can cause arc flash. The following precautions must be observed when working on or around electrical equipment:

- Remove watches, jewelry, rings, and other metallic objects.
- Use tools with insulated handles.
- Safety clothing and shoes must comply with local codes and regulations.
Lock Out/Tag Out Guidelines

DANGER
Failure to follow all the applicable lock out/tag out (LOTO) procedures at all times may result in serious injury or death.

With power applied to the ESS, hazardous voltages are present on some components. To prevent death or injury, do not touch any components within the enclosure unless specifically directed to do so. To reduce the risk of electrical shock, make sure that all equipment is properly grounded. For more information, refer to the installation manual.

WARNING
Enclosure doors must remain closed except when access to the enclosure interior is required. Personnel should keep a safe distance from enclosures whenever the equipment is energized. Always comply with local, state, and national lock out/tag out guidelines when working with or near the ESS. The LOTO procedures must meet or exceed the requirements of all guidelines presented in SAMSUNG SDI safety documentation. Follow these steps before entering potentially hazardous areas or beginning work on the ESS:

- Wear protective clothing and shoes.
- Identify and isolate all power and stored energy sources.
- Apply appropriate LOTO devices. When applying LOTO to the ESS, do not touch anything within the enclosure except as specifically directed in the work procedures.
- Complete the site-specific LOTO procedure and safety checklist before beginning work.

General Warnings

DANGER
When energized, this equipment presents a hazard of electric shock, death, and injury. Only authorized, properly trained personnel who are thoroughly familiar with the equipment and should install, operate, or maintain this equipment.

DANGER
To avoid death, injury, and property damage, follow all safety procedures promulgated by Environmental Health and Safety (EHS) guidelines.

DANGER
To minimize the hazards of electrical shock, death, and injury, approved grounding practices and procedures must be strictly followed.

WARNING
To avoid injury and equipment damage, personnel must adhere to the site protocol concerning working at heights.

WARNING
To avoid personal injury or equipment damage caused by equipment malfunction, only properly and qualified trained personnel should modify any programmable machine.

WARNING
Always ensure that applicable standards and regulations are followed and only properly certified equipment is used as a critical component of a safety system. Never assume that a safety-critical control loop is functioning correctly.
Table of Contents

Important Safety Instructions .. i
 General Instructions .. ii
 Safety Precautions .. ii
 Personnel and Equipment Warnings ... iii
 Dangerous Voltages ... iii
 Lock Out/Tag Out Guidelines .. iv
 General Warnings ... iv

Table of Contents .. i

Tables ... iii

Figures ... iv

1. About this Manual ... 1
 1.1 Purpose .. 1
 1.2 Target Audience .. 1
 1.3 Organization ... 1
 1.4 Revision History ... 2
 1.5 Acronyms and Abbreviations ... 3

2. Battery System Operation ... 4
 2.1 Indicator LED ... 4
 2.2 Dry Contact Signals .. 6
 2.3 Operation Status ... 8
 2.3.1 Normal Status .. 8
 2.3.2 Minor Protection Status (Alarm) ... 8
 2.3.3 Major Protection Status (Fault) ... 8

3. Maintenance Checks ... 9
 3.1 Daily Checks ... 9
 3.2 Monthly Checks .. 9
 3.3 Annual Check .. 9
 3.4 Maintenance Checklist ... 10

4. Troubleshooting, Repair and Replacement .. 11
 4.1 Troubleshooting .. 14
 4.1.1 Overvoltage Protection – Cell (Major Protection) ... 14
 4.1.2 Undervoltage Protection – Cell (Major Protection) ... 14
 4.1.3 Overvoltage Protection – Rack (Major Protection) ... 15
 4.1.4 Undervoltage Protection – Rack (Major Protection) .. 15
 4.1.5 Voltage Imbalance (Minor Protection) .. 15
 4.1.6 Voltage Sensing Error (Minor Protection) .. 16
 4.1.7 Overtemperature Protection (Major Protection) .. 16
 4.1.8 Undertemperature Protection (Minor Protection) ... 16
 4.1.9 Temperature Imbalance (Minor Protection) .. 16
 4.1.10 Overcurrent Protection (Charge) (Major Protection) .. 17
 4.1.11 Overcurrent Protection (Discharge) (Major Protection) .. 17
 4.1.12 Communication Failure (Module ↔ Rack) (Minor Protection) 17
 4.1.13 Communication Failure (Rack ↔ System) (Minor Protection) 18
 4.1.14 Communication Failure (System BMS ↔ Monitoring Software) 19
 4.1.15 MCCB Failure (Minor Protection) ... 19
4.1.16 MCCB Sensor Failure (Minor Protection) .. 19
4.1.17 Current Sensing Error (Minor Protection) ... 19
4.1.18 Fuse Failure (Minor Protection) .. 20
4.1.19 BMS Power is Off ... 20
4.1.20 MCCB Handle Cannot be Set to “On” .. 20

4.2 Repair Procedures ... 21
4.2.1 Module BMS Connection Check .. 21
4.2.2 Switchgear Connection Check .. 23
4.2.3 SMPS Assembly Connection Check ... 25
4.2.4 Busbar Connection Check .. 29
4.2.5 Cell Voltage Balancing .. 30
4.2.6 System Reset .. 31
4.2.7 MCCB Handle Control ... 31

4.3 Replacement Procedures ... 33
4.3.1 Wire Harness Replacement .. 34
4.3.2 Battery Module Replacement ... 40
4.3.3 Rack Fuse Replacement ... 48
4.3.4 Switchgear Replacement .. 53
4.3.5 SMPS Assembly Replacement .. 62

5. Appendix .. 71
5.1 Disposal and Recycling ... 71
Tables

Table 2-1: Indicator LED Status ... 4
Table 2-2: Indicated Codes .. 5
Table 2-3: Dry Contact Connector Description .. 6
Table 2-4: Dry Contact Operation .. 7
Table 3-1: Maintenance Checklist Template ... 10
Table 4-1: Recommended Tools and Instruments for Repair and Replacement 11
Figures

Figure 2-1: Dry Contact Connector Pinout ... 6
Figure 4-1: System BMS LED .. 18
Figure 4-2: Signal “IN” and “OUT” Connectors .. 21
Figure 4-3: Battery Module with Front Cover Removed ... 22
Figure 4-4: Voltage and Temperature Sensing Connectors 22
Figure 4-5: DC Power Cables from SMPS Assembly Type A to Switchgear 23
Figure 4-6: DC Power Cables from SMPS Assembly Type B to Switchgear 23
Figure 4-7: CAN Signal Cable Connection from SMPS Assembly to Switchgear 24
Figure 4-8: Signal Cabling Examples of Left Alignment of Switchgears 24
Figure 4-9: Termination resistor setting .. 25
Figure 4-10: DC Power Cables from SMPS Assembly Type A to Switchgear 25
Figure 4-11: DC Power Cables from SMPS Assembly Type B to Switchgear 26
Figure 4-12: CAN Signal Cable Connection from SMPS Assembly to Switchgear 26
Figure 4-13: Dry Contact Cable Connection to SMPS Assembly 26
Figure 4-14: AC Input Terminals .. 27
Figure 4-15: AC Input Terminals with Cables Attached ... 27
Figure 4-16: AC Input Terminals Protective Covers .. 28
Figure 4-17: Remove the front covers ... 29
Figure 4-18: Reattach the Front Covers .. 30
Figure 4-19: Pressing the Reset Button .. 31
Figure 4-20: MCCB Handle in Trip Position .. 32
Figure 4-21: MCCB Handle in Off Position ... 32
Figure 4-22: MCCB Handle in On Position ... 32
Figure 4-23: Remove Switchgear to Module #1 OUT Signal Cable 34
Figure 4-24: Install Signal Cable Between the Switchgear and Battery Module #1 OUT .. 35
Figure 4-25: Opening for Cable Installation .. 35
Figure 4-26: Remove Module to Module Signal Cable .. 36
Figure 4-27: Install Module to Module Signal Cable ... 36
Figure 4-28: CAN Wire Harness Between Switchgear Assemblies 37
Figure 4-29: CAN Cable Connection from SMPS Assembly to Switchgear 37
Figure 4-30: MCCB Handle in “OFF” position ... 38
Figure 4-31: DC Power Cables from SMPS Assembly Type A to Switchgear 38
Figure 4-32: DC Power Cables from SMPS Assembly Type B to Switchgear 38
Figure 4-33: MCCB Handle in “ON” Position ... 39
Figure 4-34: Battery Module Type A ... 41
Figure 4-35: Battery Module Type B ... 41
Figure 4-36: MCCB Handle in “OFF” Position ... 41
Figure 4-37: Remove Battery Module Front Covers ... 41
Figure 4-38: Measuring Each Battery Module’s Voltage ... 42
Figure 4-39: Assemble Battery Module Front Covers .. 43
Figure 4-40: DC Power Supply and Battery Module Connection 43
Figure 4-41: Battery Module Signal Cables ... 44
Figure 4-42: Battery Module Front Covers ... 44
Figure 4-43: Busbars on Positive and Negative Terminals 45
Figure 4-44: Pivoting the Guide and Pulling the Battery Module Out 45
Figure 4-45: Inserting the Replacement Battery Module 45
Figure 4-46: Removing the Front Covers ... 46
Figure 4-47: Busbars ... 46
Figure 4-48: Reattaching the Front Cover to the Battery Module 47
Figure 4-49: Connecting the Signal Cables .. 47
Figure 4-50: MCCB Handle in “ON” Position .. 47
Figure 4-51: MCCB Handle in “OFF” Position .. 48
Figure 4-52: Removing Rack Fuse Cover ... 49
Figure 4-53: Remove the Battery Module Front Covers .. 49
Figure 4-54: Remove the Bolts from Battery Module Terminals 50
Figure 4-55: Remove the Rack Fuse Assembly .. 50
Figure 4-56: Rack Fuse Busbar Assembly ... 50
Figure 4-57: Attach the Replacement Rack Fuse Assembly 51
Figure 4-58: Bolts for the Battery Module Terminals .. 51
Figure 4-59: Battery Module Front Cover .. 51
Figure 4-60: Rack Fuse Cover .. 52
Figure 4-61: MCCB Handle in “ON” Position ... 52
Figure 4-62: MCCB Handle in “OFF” Position .. 53
Figure 4-63: DC IN Cable ... 53
Figure 4-64: CAN Cable to SMPS Assembly ... 53
Figure 4-65: CAN Cable to Adjacent Rack ... 54
Figure 4-66: Module Signal Cable .. 54
Figure 4-67: Battery Module Front Covers ... 54
Figure 4-68: Bolts on Battery Modules .. 55
Figure 4-69: Switchgear Assembly Terminal Covers ... 55
Figure 4-70: Busbars ... 56
Figure 4-71: P+, P- Terminals ... 56
Figure 4-72: Screws on Switchgear Assembly .. 56
Figure 4-73: Screws on Switchgear Assembly Grounding Cable 57
Figure 4-74: Replacing Switchgear .. 57
Figure 4-75: Screws on Switchgear .. 57
Figure 4-76: Screws on Switchgear Grounding Cable .. 58
Figure 4-77: Busbars ... 58
Figure 4-78: B+, B-, P+, P- Terminal Connections and Terminal Covers 59
Figure 4-79: Switchgear to Module Signal Cable .. 59
Figure 4-80: Switchgear to SMPS Assembly CAN Signal Cable 60
Figure 4-81: Adjacent Rack CAN Signal Cable ... 60
Figure 4-82: DC Power Cables from SMPS Assembly Type A to Switchgear 60
Figure 4-83: DC Power Cables from SMPS Assembly Type B to Switchgear 61
Figure 4-84: MCCB Handle in “ON” Position .. 61
Figure 4-85: MCCB Handle in “OFF” Position .. 62
Figure 4-86: AC Input Terminals .. 62
Figure 4-87: Cables to the AC Input Terminals .. 63
Figure 4-88: DC OUT Connection .. 63
Figure 4-89: BMS CAN Connection .. 63
Figure 4-90: TCP/IP Connection .. 64
Figure 4-91: Dry Contact Connection .. 64
Figure 4-92: Unscrew SMPS Assembly ... 64
Figure 4-93: Unscrew SMPS Assembly Grounding Cable ... 65
Figure 4-94: Remove the SMPS Assembly ... 65
Figure 4-95: Insert the SMPS Assembly ... 66
Figure 4-96: Screw on the SMPS Assembly ... 66
Figure 4-97: Screw on the SMPS Assembly Grounding Cable 67
Figure 4-98: DC Power Cables from SMPS Assembly Type A to Switchgear 67
Figure 4-99: DC Power Cables from SMPS Assembly Type B to Switchgear 67
Figure 4-100: BMS CAN Cable from SMPS Assembly to Switchgear 68
Figure 4-101: TCP/IP Cable ... 68
Figure 4-102: Dry Contact Cable .. 68
Figure 4-103: AC Input Terminals .. 69
Figure 4-104: AC Input Terminals with Cables Attached ... 69
Figure 4-105: AC Input Terminals Protective Cover ... 70
Figure 4-106: MCCB Handle in “ON” Position .. 70
1. About this Manual

This section briefly describes the purpose, audience, organization, revision history, and acronyms and abbreviations used in this document.

1.1 Purpose

The purpose of this manual is to provide information for the safe and successful operation and maintenance of the product.

1.2 Target Audience

This manual is intended for system administrators and operators who install, operate, maintain, and configure the product.

1.3 Organization

This manual is composed of the following chapters:

- Chapter 1, “About this Manual” introduces preliminary description about this document.
- Chapter 2, “Battery System Operation” explains the operation modes of the battery system.
- Chapter 3, “Maintenance Check” lists items to inspect daily, monthly, and annually.
- Chapter 4, “Troubleshooting” guides the reader through clearing protection modes and replacing components.
1.4 Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Description</th>
<th>Author</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>First Release</td>
<td></td>
<td>2016.12.23</td>
</tr>
</tbody>
</table>

Approved By:

<table>
<thead>
<tr>
<th>Name</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trusted Reviewers

<table>
<thead>
<tr>
<th>Name</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.5 Acronyms and Abbreviations

The following acronyms and abbreviations are used in this manual.

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AED</td>
<td>Automated External Defibrillator</td>
</tr>
<tr>
<td>BMS</td>
<td>Battery Management System</td>
</tr>
<tr>
<td>Comm.</td>
<td>Communication</td>
</tr>
<tr>
<td>EHS</td>
<td>Environmental Health and Safety</td>
</tr>
<tr>
<td>ESS</td>
<td>Energy Storage System</td>
</tr>
<tr>
<td>LOTO</td>
<td>LOCK OUT/TAG OUT</td>
</tr>
<tr>
<td>OT</td>
<td>Overtemperature</td>
</tr>
<tr>
<td>OVP</td>
<td>Overvoltage Protection</td>
</tr>
<tr>
<td>PCS</td>
<td>Power Conversion System</td>
</tr>
<tr>
<td>SMPS</td>
<td>Switched Mode Power Supply</td>
</tr>
<tr>
<td>SOC</td>
<td>State Of Charge</td>
</tr>
<tr>
<td>SOH</td>
<td>State Of Health</td>
</tr>
<tr>
<td>SG</td>
<td>Switchgear</td>
</tr>
<tr>
<td>UT</td>
<td>Undertemperature</td>
</tr>
<tr>
<td>UVP</td>
<td>Undervoltage Protection</td>
</tr>
<tr>
<td>UPS</td>
<td>Uninterruptible Power Supply</td>
</tr>
</tbody>
</table>
2. Battery System Operation

The battery system for a UPS is designed to be always on. The UPS and the critical load must be set up so that the battery system’s maximum allowable voltage and current are not exceeded.

2.1 Indicator LED

Four indicator LED’s on the front of the Switchgear Assembly in each rack displays the status of the battery system per string. Table 2-1 shows each LED’s color and the battery status indicated.

Table 2-1: Indicator LED Status

<table>
<thead>
<tr>
<th>Items</th>
<th>POWER(Green)</th>
<th>FAULT(Red)</th>
<th>ALARM(Yellow)</th>
<th>CURRENT(Green)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>On : MCCB Off</td>
<td>On : N/A</td>
<td>On : N/A</td>
<td>On : Discharge</td>
</tr>
<tr>
<td></td>
<td>Off : Power Off</td>
<td>Off : No Major Protection</td>
<td>Off : No Minor Protection</td>
<td>Off : Idle</td>
</tr>
<tr>
<td></td>
<td>Blink : MCCB On</td>
<td>Blink : Major Protection</td>
<td>Blink : Minor Protection</td>
<td>Blink : Charge</td>
</tr>
</tbody>
</table>
Depending on the battery system’s operating conditions, each indicator LED may be on, blinking or off. Table 2-2 shows the LED indication for the battery status.

Table 2-2: Indicated Codes

<table>
<thead>
<tr>
<th>LED Status</th>
<th>Battery Status</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>All LED’s Off</td>
<td>BMS Power Off</td>
<td>MCCB Off</td>
</tr>
<tr>
<td>POWER LED Steady</td>
<td>Normal</td>
<td>MCCB Off</td>
</tr>
<tr>
<td>POWER LED Flashing</td>
<td>Normal</td>
<td>MCCB On</td>
</tr>
<tr>
<td>POWER LED Flashing CURRENT</td>
<td>Normal</td>
<td>Discharge</td>
</tr>
<tr>
<td>POWER LED Flashing CURRENT</td>
<td>Normal</td>
<td>Charge</td>
</tr>
<tr>
<td>POWER LED Steady FAULT LED</td>
<td>Major Protection</td>
<td>Overvoltage Protection</td>
</tr>
<tr>
<td>ALARM LED Flashing</td>
<td>Minor Protection</td>
<td>Voltage Imbalance Error</td>
</tr>
<tr>
<td></td>
<td>MCCB Tripped</td>
<td>Undervoltage Protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overtemperature Protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overcurrent Protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voltage Sensing Error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Undertemperature Protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature Imbalance Error</td>
</tr>
</tbody>
</table>
2.2 Dry Contact Signals

Dry contact signals are sent from the System BMS in the SMPS Assembly to let the UPS know the status of the battery system. Three Form-C output channels send signals for major protection, minor protection, and charge stop request. One input channel receives a signal to trip the MCCB when requested from the UPS.

Table 2-3: Dry Contact Connector Description

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Major Common</td>
<td>Overvoltage Protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Undervoltage Protection</td>
</tr>
<tr>
<td>A1</td>
<td>Major Normally Closed</td>
<td>Overtemperature Protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overcurrent Protection</td>
</tr>
<tr>
<td>B2</td>
<td>Major Normally Open</td>
<td>Voltage Imbalance Error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voltage Sensing Error</td>
</tr>
<tr>
<td>A2</td>
<td>Minor Common</td>
<td>Undertemperature Protection</td>
</tr>
<tr>
<td>B3</td>
<td>Minor Normally Closed</td>
<td>Temperature Imbalance Error</td>
</tr>
<tr>
<td>A3</td>
<td>Minor Normally Open</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>MCCB Status Common</td>
<td>All MCCB’s are Off : A4, B4 are closed.</td>
</tr>
<tr>
<td>A4</td>
<td>MCCB Status Normally Closed</td>
<td>One of the MCCB’s is on : B5, B4 are closed.</td>
</tr>
<tr>
<td>B5</td>
<td>MCCB Status Normally Open</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>Input</td>
<td>Set Condition: UPS opens B6, A6 contacts for more than 3 seconds.</td>
</tr>
<tr>
<td>A6</td>
<td>GND</td>
<td>Action : Battery MCCB Trip</td>
</tr>
</tbody>
</table>

Figure 2-1: Dry Contact Connector Pinout
Table 2-4: Dry Contact Operation

<table>
<thead>
<tr>
<th>Battery Status</th>
<th>MAJOR</th>
<th></th>
<th>MINOR</th>
<th></th>
<th>MCCB Status</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B1</td>
<td>A1</td>
<td>B2</td>
<td>A2</td>
<td>B3</td>
<td>A3</td>
<td>B4</td>
<td>A4</td>
<td>B5</td>
</tr>
<tr>
<td>Normal Status</td>
<td>COM</td>
<td>Open</td>
<td>Close</td>
<td>COM</td>
<td>Open</td>
<td>Close</td>
<td>COM</td>
<td>Open</td>
<td>Close</td>
</tr>
<tr>
<td>Major Protection</td>
<td>COM</td>
<td>Close</td>
<td>Open</td>
<td>COM</td>
<td>Open</td>
<td>Close</td>
<td>COM</td>
<td>Close</td>
<td>Open</td>
</tr>
<tr>
<td>Minor Protection</td>
<td>COM</td>
<td>Open</td>
<td>Close</td>
<td>COM</td>
<td>Close</td>
<td>Open</td>
<td>COM</td>
<td>Open</td>
<td>Close</td>
</tr>
<tr>
<td>MCCB Off</td>
<td>COM</td>
<td>Close</td>
<td>Open</td>
<td>COM</td>
<td>Close</td>
<td>Open</td>
<td>COM</td>
<td>Close</td>
<td>Open</td>
</tr>
<tr>
<td>BMS Power Off</td>
<td>COM</td>
<td>Close</td>
<td>Open</td>
<td>COM</td>
<td>Close</td>
<td>Open</td>
<td>COM</td>
<td>Close</td>
<td>Open</td>
</tr>
</tbody>
</table>
2.3 Operation Status

2.3.1 Normal Status

In normal status, the battery system is available for charge or discharge. The system operator must follow the guidelines below to ensure safe and optimal performance from the battery.

- The battery must be fully charged to power the critical load for the duration of the backup time.
- After a full discharge at maximum continuous power, cool the battery for at least 12 hours before recharging it. Immediate recharging after a full discharge at a recharging current higher than the specified standard charging current may increase the battery cell temperature to overtemperature protection. For optimal performance, delay recharging until the battery temperature returns to room temperature ±3°C.
- Immediate recharging after a full discharge at maximum continuous power may degrade the battery performance.

2.3.2 Minor Protection Status (Alarm)

When a minor protection (alarm status) occurs, the battery system will send a message to the UPS or other systems and request that all charge or discharge operation be stopped until the problem is corrected. Battery system will not be disconnected in minor protection status to maximize the battery’s availability. Refer to Section 4 “Troubleshooting” for solutions to minor protection status.

2.3.3 Major Protection Status (Fault)

If the system detects a major protection (fault status), it will trip the MCCB to disconnect the battery system from the UPS to prevent damage to the battery. Measures must be taken to clear the major protection status and return the battery system to normal status. Personnel must be on-site to return the MCCB from “trip” to “on” position after returning the system status to normal. Refer to Section 4 “Troubleshooting” for details on solutions to major protection status.
3. Maintenance Checks

The battery system components are designed to be free of regular maintenance. Regular inspection of components and power connections are recommended to ensure proper performance. Scheduled checks of the battery system are recommended but not mandatory for optimal performance.

3.1 Daily Checks

Following is a list of items to be checked daily.

- Rack voltage should be in its floating charge voltage.
- Cell voltage range should be within 300mV.
- MCCB must be on for all racks.
- There must be no alarms or faults.
- Maintaining room temperature and humidity according to the range of operation.

3.2 Monthly Checks

Personnel should visually inspect the battery system monthly and review log data about the battery and its operating environment.

- Battery should have no visible damage (rust, bent structure, damaged or missing cables or busbars, etc.)
- Check the recorded data of the battery system for the voltage and current readings.
- Check the date and time of charge and discharge cycles.
- Check whether any alarms or faults have been triggered.

3.3 Annual Check

A trend analysis of the recorded data (battery and environment) is recommended.
3.4 Maintenance Checklist

Refer to the following checklist template for scheduled checks. Detailed recordings may be necessary depending on the level of maintenance required by the user.

Table 3-1: Maintenance Checklist Template

<table>
<thead>
<tr>
<th>Items</th>
<th>Criteria</th>
<th>Location</th>
<th>Schedule</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Status</td>
<td>1. Battery voltage</td>
<td>Control room</td>
<td>Daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) Rack voltage check</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Cell voltage check (max/min difference)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Alarm or faults: No alarms or faults set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. MCCB status: All on</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Alarm or protection: No alarms or protections set</td>
<td>On-Site</td>
<td>Weekly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check the indicator LED’s in each rack</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. MCCB status: All on</td>
<td>On-Site</td>
<td>Weekly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check the position of the MCCB handle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Visual Inspection: check for physical damages</td>
<td>On-Site</td>
<td>Monthly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(rust, bent structure, damaged or missing cables, etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td>Temperature (measured from facility’s HVAC unit or other measurement devices)</td>
<td>Control Room</td>
<td>Daily</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humidity (measured from facility’s HVAC unit or other measurement device)</td>
<td>On-Site</td>
<td>Daily</td>
<td></td>
</tr>
<tr>
<td>Recorded Data</td>
<td>1. Recorded voltage and current</td>
<td>Control Room</td>
<td>Monthly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Date and time of charge and discharge cycles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Number of alarms and faults recorded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Recorded voltage and current</td>
<td>Control Room</td>
<td>Annual</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Date and time of charge and discharge cycles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Number of alarms and faults recorded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Record of temperature and humidity (measured from facility’s HVAC unit or other measurement device)</td>
<td>Control Room</td>
<td>Annual</td>
<td></td>
</tr>
</tbody>
</table>
4. Troubleshooting, Repair and Replacement

Users must operate the battery system within its specified range of operating conditions. Refer to the “Product Specification” for details.

If the battery system is not operated under the specified conditions, it may display protective modes depending on conditions. Users should familiarize themselves with the types of protective modes and the battery system’s behavior during these modes. Dry contact signals from the System BMS and indicator LED’s on the front of each switchgear displays the status of the battery system. Users can quickly and easily determine the battery system’s status from a centralized monitoring location using the dry contact signals or perform an on-site examination using the indicator LED’s. Detailed status of the battery system can be examined by using additional monitoring software.

When additional examination is necessary, some tools and instruments may be required. Refer to the installation manual and Table 4-1 “Recommended Tools and Instruments for Repair and Replacement” for the list of tools that may be needed and instructions on how to use them.

If repair or replacement is required, refer to the installation manual for safety guidelines and basic information on disassembly and reassembly of components.

Table 4-1: Recommended Tools and Instruments for Repair and Replacement

<table>
<thead>
<tr>
<th>No.</th>
<th>Items</th>
<th>Use</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power Screwdriver/Drill (Maximum torque: 26Nm [270 kgf cm])</td>
<td>Fastening Switchgear and SMPS assemblies to the rack frames (5.1–6.1Nm [50–60 kgf cm])</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Phillips Screwdriver or Bit (M5 Tip)</td>
<td>Fastening Switchgear and SMPS assemblies to the rack frames</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Box Cutter</td>
<td>Opening boxes</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Forklift</td>
<td>Moving pallets of modules and switchgears</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Insulated Torque Wrench</td>
<td>Installing high-voltage cable (10~50 Nm [100 ~ 500 kgf cm])</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Insulated Sockets (13 mm, 17mm and 19mm)</td>
<td>Installing power cables and busbars</td>
<td></td>
</tr>
</tbody>
</table>
4. Troubleshooting, Repair and Replacement

<table>
<thead>
<tr>
<th>No.</th>
<th>Items</th>
<th>Use</th>
<th>Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Insulated Extension Bar for Sockets</td>
<td>Installing a power cable</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Battery Tester</td>
<td>Measuring battery modules’ voltage and internal impedance</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Digital Multimeter</td>
<td>Measuring battery string’s voltage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Probes must be rated for 600V DC or above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>DC Ammeter (Clamp Meter)</td>
<td>Measuring battery string’s current</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Must be rated for DC 1000A or above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Controllable DC Load</td>
<td>Discharging replacement battery module</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recommended Specifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1) Input DC 40V or above</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) 1kW or above</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Controllable with 10mV resolution or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) CV discharge available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Controllable DC Power Supply</td>
<td>Charging replacement battery module</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recommended specifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1) Output DC 40V or above</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) 1kW or above</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Controllable with 10mV resolution or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) CC-CV charge available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Computer</td>
<td>Running battery monitoring software</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microsoft® Windows® 7 SP1 (English) or later recommended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Items</td>
<td>Use</td>
<td>Appearance</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>14</td>
<td>Rack BMS ID Writer Cable</td>
<td>Battery monitoring software</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use with computer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>IXXAT USB-to-CAN V2</td>
<td>Battery monitoring software</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use with computer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Troubleshooting, Repair and Replacement

4.1 Troubleshooting

To determine the status of the battery system, users must use additional battery status monitoring software to examine the protection mode. Refer to the installation manual about using the monitoring software. Also, refer to Section 2.3 “Operation Status” for set and release conditions for each protection mode. Once the user knows the protection mode, refer to the following sections for solutions.

4.1.1 Overvoltage Protection – Cell (Major Protection)

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Overcharged Cell | - Press the reset switch in SMPS Assembly and see if it clears the protection.
 | - Check the UPS settings for floating charge voltage. It must be set at 4.2V per cell (i.e., for 136S system, 571.2V must be set as floating charge voltage and for 128S system, 537.6V must be set as floating charge voltage)
 | - Check the dry contact signal cable for “charge stop” and see whether the “charge stop” signal is correctly received by the UPS.
 | - Check the actual cell voltage data using monitoring software and see if there is a cell voltage reading significantly higher than other battery cells. If so, cell balancing is required. Refer to troubleshooting for voltage imbalance.
 | - If the problem persists, the module with the overcharged cell may have to be replaced. |
| Defective Wiring | - Remove the front cover of the module and check the Module BMS wiring.
 | - Press the reset switch in SMPS Assembly and see if it clears the protection. |
| Loose Busbar Installation| - Check the torque of the module and switchgear busbars.
 | - Retighten any loose bolts. |
| Measurement Error | - Press the reset switch in SMPS Assembly and see if it clears the protection.
 | - Check the actual cell voltage data using monitoring software.
 | - Replace the Module BMS if the cell voltage is incorrect.
 | - If the problem persists, replace the battery module. |

4.1.2 Undervoltage Protection – Cell (Major Protection)

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Deep-Discharged Cell | - Press the reset switch in the SMPS Assembly and see if it clears the protection.
 | - Check the UPS settings for the end-of-discharge voltage. It must be set at 3.0V per cell (i.e., for 136S system, 408V must be set as the end-of-discharge voltage and for 128S system, 384V must be set as end of discharge voltage).
 | - Check the actual cell voltage data using monitoring software and see if there is a cell voltage reading significantly lower than for other battery cells. If so, cell balancing is required. Refer to the Troubleshooting Section 4.2.5 “Cell Voltage Balancing.” |
| Defective Wiring | - Remove the Battery Module’s front and check the Module BMS wiring.
 | - Press the reset switch in the SMPS Assembly and see if it clears the protection. |
| Loose Busbar | - Check the torque of the module and switchgear busbars.
 | - Retighten any loose bolts. |
| Measurement Error | - Press the reset switch in SMPS Assembly and see if it clears the protection.
 | - Check the actual cell voltage data using monitoring software.
 | - Replace the Module BMS if the cell voltage is incorrect.
 | - If the problem persists, replace the battery module. |
4. Troubleshooting, Repair and Replacement

4.1.3 Overvoltage Protection – Rack (Major Protection)

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Overcharged Cell | - Check the UPS settings for floating charge voltage. It must be set at 4.2V per cell (i.e., for 136S system, 571.2V must be set as floating charge voltage and for 128S system, 537.6V must be set as floating charge voltage).
- Check the dry contact signal cable for "charge stop" and see if the "charge stop" signal is correctly received by the UPS.
- Check the actual cell voltage data using monitoring software and see if there is a cell voltage reading significantly higher than for other battery cells. If so, cell balancing is required. Refer to Troubleshooting Section 4.2.5 “Cell Voltage Balancing.”
- If the problem repeats, the Battery Module with the overcharged cell may have to be replaced. |
| Loose Busbar | - Check the torque of the module and switchgear busbars.
- Retighten any loose bolts. |
| Measurement Error | - Check the actual rack voltage data using monitoring software.
- Replace the switchgear if the rack voltage readings are incorrect. |

4.1.4 Undervoltage Protection – Rack (Major Protection)

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Deep-Discharged Cell | - Check the UPS settings for end of discharge voltage. It must be set at 3.0V per cell.
(i.e., for 136S system, 408V must be set as end-of-discharge voltage.
and for 128S system, 384V must be set as the end-of-discharge voltage).
- Check the actual cell voltage data using monitoring software and see if there is a cell voltage reading significantly lower than for other battery cells. If so, cell balancing is required. Refer to Troubleshooting Section 4.2.5 “Cell Voltage Balancing.”
- If the problem repeats, the Battery Module with the overcharged cell may have to be replaced. |
| Loose Busbar | - Check the torque of the module and switchgear busbars.
- Retighten any loose bolts. |
| Blown Fuse | - Check whether the “fuse failure” alarm is set.
- Check the status of the rack fuse.
- Replace any blown fuse and reset the system. |
| Measurement Error | - Check the actual rack voltage data using monitoring software
- Replace the switchgear if the rack voltage is incorrect. |

4.1.5 Voltage Imbalance (Minor Protection)

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Imbalanced Cell | - Check the actual cell voltage data using monitoring software and see if there is a cell voltage reading significantly higher or lower than for other battery cells. If so, cell balancing is required. Refer to Troubleshooting Section 4.2.5 “Cell Voltage Balancing.”
- If the problem persists, replace the battery module. |
| Loose Busbar | - Check the torque of the module and switchgear busbars.
- Retighten any loose bolts. |
| Defective Wiring | - Remove the front cover of the module and check the Module BMS wiring.
- Press the reset switch in the SMPS Assembly and see if it clears the protection. |
| Measurement Error | - Check the actual cell voltage data using monitoring software
- Replace the Module BMS if the cell voltage is incorrect.
- If the problem persists, replace the battery module. |
4.1.6 Voltage Sensing Error (Minor Protection)

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Defective Wiring | - Remove the module’s front cover and check the Module BMS wiring.
 | - Press the reset switch in the SMPS Assembly and see if it clears the protection. |
| Loose busbar | - Check the torque of the module and switchgear busbars.
 | - Retighten any loose bolts. |
| Measurement Error | - Check the actual cell voltage data using monitoring software.
 | - Check the actual rack voltage data using monitoring software.
 | - Measure the rack voltage and each module’s voltage using a digital multimeter and compare the readings to the data obtained from the monitoring software. To measure the rack’s voltage, a multimeter with proper probe rating must be used.
 | - If module voltage reading is not correct, determine which module has the incorrect voltage and check its Module BMS connection. If the problem persists, replace the module BMS.
 | - If the problem persists, the module must be replaced.
 | - Replace the Switchgear if the rack voltage is incorrect. |

4.1.7 Overtemperature Protection (Major Protection)

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Defective Wiring | - Remove the module’s front cover and check the Module BMS wiring.
 | - Press the reset switch in the SMPS Assembly and see if it clears the protection. |
| Measurement Error | - Check the actual cell temperature data using monitoring software.
 | - If cell temperature reading is not correct, check the connection of Module BMS.
 | - If the problem persists, the module must be replaced. |
| Defective Thermistor | - If the thermistor inside the Battery Module is defective (short), the temperature may be fixed at 95℃. Battery Module must be replaced. |
| Improper Ventilation | - Make sure the rack frame is placed so that air can flow naturally through the frame.
 | - Forced air convection may be used. |

4.1.8 Undertemperature Protection (Minor Protection)

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Defective Wiring | - Remove the module’s front cover and check the Module BMS wiring.
 | - Press the reset switch in SMPS Assembly and see if it clears the protection. |
| Measurement Error | - Check the actual cell temperature data using monitoring software.
 | - If cell temperature reading is not correct, check the connection of the Module BMS.
 | - If the problem persists, the Module must be replaced. |

4.1.9 Temperature Imbalance (Minor Protection)

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Defective Wiring | - Remove the module’s front cover and check the Module BMS wiring.
 | - Press the reset switch in the SMPS Assembly and see if it clears the protection. |
| Measurement Error | - Check the actual cell temperature data using monitoring software.
 | - If cell temperature reading is not correct, check the connection of Module BMS.
 | - If the thermistor inside the Battery Module is defective, the temperature may be set at -30℃ if opened or 95℃ if shorted. Battery module must be replaced. |
Possible Problem | Solution
--- | ---
Improper Ventilation | - Make sure that the rack frame is placed so that air can flow naturally through the frame.
- Forced air convection may be used to provide extra cooling.

4.1.10 Overcurrent Protection (Charge) (Major Protection)

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Adjacent Rack Disconnected (multiple rack configuration only) | - Current flow may be concentrated in a multiple rack configuration if only some racks are connected and some are disconnected.
- Make sure that the MCCB in all racks are in the “on” position. |
| Inrush Current from Adjacent Rack (multiple rack configuration only) | - If there is a voltage difference between the racks, there may be inrush current from rack to rack.
- Measure the rack’s inrush current in all conditions using a clamp meter.
- Match the rack’s voltage by installing modules with similar voltage for different strings.
- Use a clamp meter to measure the inrush current when the UPS is initially switched on.
- Condition the UPS DC bus to reduce or eliminate the inrush. |
| Inrush Current from UPS | |
| Measurement Error | - Check the current readings using the monitoring program.
- If the values are sporadic, the BMS may be malfunctioning.
- If the values are constant but incorrect, the BMS may be calibrated incorrectly.
- Replace the switchgear. |

4.1.11 Overcurrent Protection (Discharge) (Major Protection)

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Adjacent Rack Disconnected (multiple rack configuration only) | - Current flow may be concentrated in a multiple rack configuration if some racks are connected and some are disconnected.
- Make sure that the MCCB in all racks are in the “on” position. |
| Inrush Current from Adjacent Rack (multiple rack configuration only) | - If there is a voltage difference between the racks, there may be inrush current from rack to rack.
- Use a clamp meter to measure the rack’s inrush current in all conditions.
- Match the rack’s voltage by installing modules with similar voltage for different strings.
- Use a clamp meter to measure the inrush current when the UPS is initially switched on.
- Condition the UPS DC bus to reduce or eliminate the inrush. |
| Inrush Current from UPS | |
| Measurement Error | - Check the current readings using the monitoring program.
- If the values are sporadic, BMS may be malfunctioning.
- If the values are constant but incorrect, BMS may be calibrated incorrectly.
- Replace the switchgear. |

4.1.12 Communication Failure (Module ↔ Rack) (Minor Protection)

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Defective Signal Cable | - Replace the signal cable between the Switchgear and the module.
- Replace the signal cables between the modules. |
| Defective Module BMS | - Check the LED on the Module BMS.
- If it is not blinking, replace the Module BMS. |
4.1.13 Communication Failure (Rack ↔ System) (Minor Protection)

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Termination</td>
<td>- Make sure that the communication terminating switch is on for the Switchgear that is farthest from the SMPS Assembly Type A.</td>
</tr>
<tr>
<td>Defective Signal Cable</td>
<td>- Replace the signal cable between the Switchgear and the SMPS Assembly.</td>
</tr>
<tr>
<td></td>
<td>- Press the reset switch in the SMPS Assembly.</td>
</tr>
<tr>
<td>Adjacent Rack not Powered</td>
<td>- Check the indicator LED of adjacent racks.</td>
</tr>
<tr>
<td></td>
<td>- If the POWER LED is not on, make sure that the AC input cables to its own SMPS Assembly are connected correctly and securely.</td>
</tr>
<tr>
<td></td>
<td>- Check the power cables from the “DC OUT” port of the SMPS Assembly to the Switchgear’s “DC IN” port and make sure they are installed correctly.</td>
</tr>
<tr>
<td>Incorrect Rack BMS Configuration</td>
<td>- The Rack BMS CAN ID may be set incorrectly.</td>
</tr>
<tr>
<td></td>
<td>- Refer to the installation manual for BMS configuration and try setting the CAN ID again.</td>
</tr>
<tr>
<td></td>
<td>- Reset the system by pressing the reset switch in the SMPS Assembly.</td>
</tr>
<tr>
<td>Defective Rack BMS</td>
<td>- Check the status of the indicator LED’s.</td>
</tr>
<tr>
<td></td>
<td>- If all four LED’s are on or all off, the Rack BMS may be damaged.</td>
</tr>
<tr>
<td></td>
<td>- Replace the Switchgear Assembly.</td>
</tr>
<tr>
<td>Defective System BMS</td>
<td>- Check the communication from the SMPS Assembly data ports (TCP/IP or RS485) using the monitoring software and, if available, using an oscilloscope to check the waveform of the data signals.</td>
</tr>
<tr>
<td></td>
<td>- Check the status of the LED inside the SMPS Assembly. Refer to Figure 4-1. System BMS LED.</td>
</tr>
<tr>
<td></td>
<td>- If there is only steady red LED, reset the System BMS by removing then reapplying the AC power to the SMPS Assembly (power-on reset).</td>
</tr>
<tr>
<td></td>
<td>- At least one or more red LED should be blinking inside the SMPS Assembly after power-on reset.</td>
</tr>
<tr>
<td></td>
<td>- Replace the SMPS Assembly if there is no blinking red LED even after a power-on reset.</td>
</tr>
</tbody>
</table>

![Diagram of System BMS LED](image)

Figure 4-1. System BMS LED
4.1.14 Communication Failure (System BMS ↔ Monitoring Software)

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>System BMS improperly initiated</td>
<td>- Check the communication from the SMPS Assembly data ports (TCP/IP or RS485) using the monitoring software and, if available, using an oscilloscope to check the waveform of the data signals.</td>
</tr>
<tr>
<td></td>
<td>- Check the status of the LED inside the SMPS Assembly. Refer to Figure 4-1. System BMS LED</td>
</tr>
<tr>
<td></td>
<td>If there is only steady red LED or no LED on, reset the System BMS by removing then reapplying the AC power to the SMPS Assembly (power-on reset). At least one or more red LED should be blinking inside the SMPS Assembly after power-on reset.</td>
</tr>
<tr>
<td></td>
<td>- If the problem persists, refer to 4.1.19. BMS Power is Off.</td>
</tr>
</tbody>
</table>

4.1.15 MCCB Failure (Minor Protection)

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defective Rack BMS</td>
<td>- Press the reset switch in the SMPS Assembly and see if it clears the protection.</td>
</tr>
<tr>
<td></td>
<td>- Make sure that the MCCB handle is in the "trip" or "off" position.</td>
</tr>
<tr>
<td></td>
<td>- Measure the current using monitoring software while the battery is idle.</td>
</tr>
<tr>
<td></td>
<td>- If measured current is not 0A, the current sensing units may be malfunctioning.</td>
</tr>
<tr>
<td></td>
<td>- Replace the Switchgear Assembly.</td>
</tr>
<tr>
<td>Defective MCCB</td>
<td>- Press the reset switch in the SMPS Assembly and see if it clears the protection.</td>
</tr>
<tr>
<td></td>
<td>- Make sure that the MCCB handle is in the "trip" or "off" position.</td>
</tr>
<tr>
<td></td>
<td>- Check the continuity between the "B-" terminal and the "P-" terminal.</td>
</tr>
<tr>
<td></td>
<td>- If there is continuity between the two terminals, the MCCB is defective.</td>
</tr>
<tr>
<td></td>
<td>- Replace the Switchgear Assembly.</td>
</tr>
<tr>
<td>Defective Auxiliary Unit</td>
<td>- Move the MCCB handle to the "on" position.</td>
</tr>
<tr>
<td></td>
<td>- Use the monitoring software to check the status of the MCCB.</td>
</tr>
<tr>
<td></td>
<td>- If the MCCB status is "off," the MCCB auxiliary unit may be malfunctioning.</td>
</tr>
<tr>
<td></td>
<td>- Replace the Switchgear Assembly.</td>
</tr>
</tbody>
</table>

4.1.16 MCCB Sensor Failure (Minor Protection)

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defective Auxiliary Unit</td>
<td>- Press the trip button on the MCCB to trip it. Shift the MCCB handle to "off," then to the "on" position.</td>
</tr>
<tr>
<td></td>
<td>- Press the reset switch in the SMPS Assembly.</td>
</tr>
<tr>
<td></td>
<td>- If the alarm is not cleared, the rack BMS may be defective.</td>
</tr>
<tr>
<td>Defective Rack BMS</td>
<td>- Press the reset switch in the SMPS Assembly and see if it clears the protection.</td>
</tr>
<tr>
<td></td>
<td>- If the problem persists, replace the Switchgear Assembly.</td>
</tr>
</tbody>
</table>

4.1.17 Current Sensing Error (Minor Protection)

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defective Internal Wiring</td>
<td>- Press the reset switch in the SMPS Assembly and see if it clears the protection.</td>
</tr>
<tr>
<td></td>
<td>- Measure the current using monitoring software during charge or discharge.</td>
</tr>
<tr>
<td></td>
<td>- If there is no reading, there may be a defect in the Rack BMS or the internal wirings in the Switchgear Assembly. Replace the Switchgear Assembly.</td>
</tr>
</tbody>
</table>
4. Troubleshooting, Repair and Replacement

4.1.18 Fuse Failure (Minor Protection)

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Fuse Blown | - When the MCCB is in the “on” position, check the continuity between the “B-” terminal and “P-” terminal.
 | - If there is no continuity between the two terminals, the fuse is blown and must be replaced. Replace the Switchgear Assembly. |
| Defective Fuse Switch | - If the fuse is not blown, the switch above the fuse may be malfunctioning. |
 | - Replace the Switchgear Assembly. |

4.1.19 BMS Power is Off

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Incorrect Cabling | - Check the cable connection to the terminal block on the front side of the SMPS Assembly.
 | - Check the cable connection between the SMPS Assembly “DC OUT” and Switchgear Assembly “DC IN.” |
| AC Input Fuse Blown | - Remove the SMPS Assembly and remove the top cover.
 | - Check the continuity of the AC input fuse holder.
 | - If any fuse is blown, replace the SMPS Assembly. |
| Defective SMPS | - If all AC input connections are correctly installed and energized, but the BMS is not being powered, the SMPS Assembly may be defective. Replace the SMPS Assembly. |

4.1.20 MCCB Handle Cannot be Set to “On”

<table>
<thead>
<tr>
<th>Possible Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPS Signaling the MCCB to Open</td>
<td>- Check the status of the UPS. Typical operation and end of discharge or due to an emergency power off will result in a trip signal to the battery MCCB’s. The MCCB’s will be prevented from closing until the UPS signal is removed.</td>
</tr>
</tbody>
</table>
| System in Fault Status | - Check the indicator LED on the front side of the Switchgear Assembly
 | - If the FAULT LED (red LED) is blinking, the major protection (fault) status is set.
 | - Major protection must be cleared before setting the MCCB to “on.”
 | - Press the reset button in SMPS Assembly Type A to clear the protection. |
| SMPS not Powered | - Check the AC input connection.
 | - Check if the AC input is energized.
 | - If all AC input connections are correctly installed and energized, SMPS Assembly may be defective. Replace the SMPS Assembly. |
| Defective Cable | - Check the cable connection to DC IN
 | - If the cable is defective, replace the DC IN cable |
| Defective MCCB Unit | - Replace the Switchgear Assembly |
| Defective Rack BMS | - Check the indicator LED on the front side of the switchgear.
 | - If the indicator LED is not operational or if all LED’s are on, the Rack BMS may be defective. Replace the Switchgear Assembly. |
4.2 Repair Procedures

Service personnel can resolve some problems by performing the following procedures without having to call Samsung SDI’s customer service.

4.2.1 Module BMS Connection Check

Check the following points to make sure the Module BMS is connected correctly.

1. Check the wire connection to the signal “IN” and “OUT” connectors. Make sure they are firmly inserted into the connector.

 ![Figure 4-2: Signal “IN” and “OUT” Connectors](image)

2. Remove the front cover to check the voltage and temperature sensing connectors.
3. Make sure that the voltage and temperature sensing wires are firmly inserted into the connector.
4.2.2 Switchgear Connection Check

Check the following points to make sure the switchgear is connected correctly.

1. Check the wire connection to the “DC IN” connectors. Both wires must be firmly inserted into the connectors.

 Figure 4-5: DC Power Cables from SMPS Assembly Type A to Switchgear

2. Check the CAN connections to the Switchgear Assembly. For the rack with the SMPS Assembly Type A, one of the connections must be made to the SMPS Assembly. A termination resistor switch must be turned on in the rack that is farthest from the rack with SMPS Assembly Type A. Refer to Figure 4-9: Termination resistor setting.

 Figure 4-6: DC Power Cables from SMPS Assembly Type B to Switchgear
Figure 4-7: CAN Signal Cable Connection from SMPS Assembly to Switchgear

Figure 4-8: Signal Cabling Examples of Left Alignment of Switchgears
4.2.3 SMPS Assembly Connection Check

1. Check the wire connection to the “DC OUT” connectors. Both wires must be firmly inserted into the connectors.

Figure 4-10: DC Power Cables from SMPS Assembly Type A to Switchgear
2. Check the CAN connections to the Switchgear Assembly.

3. Check the dry contact connector.
4. Troubleshooting, Repair and Replacement

WARNING

Before checking the AC input terminal connections, make sure they are not energized.

4. Check the AC input terminal. Remove the protective cover.

![Figure 4-14: AC Input Terminals](image1)

5. Check each AC input in the SMPS Assembly.

![Figure 4-15: AC Input Terminals with Cables Attached](image2)
6. Reattach the protective covers to the AC input terminals.

Figure 4-16: AC Input Terminals Protective Covers
4. Troubleshooting, Repair and Replacement

4.2.4 Busbar Connection Check

Verify for zero energy state or isolation between racks (strings)!

Make sure that the UPS interface is locked out and tagged out!

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Follow the instructions exactly to protect the module BMS from damage.</td>
</tr>
<tr>
<td>• Important: DO NOT deviate from the sequence of the steps below.</td>
</tr>
<tr>
<td>• The voltage of the connected system increases proportionally as battery modules are connected. Exercise extreme caution to prevent the terminals from touching anything except their intended mounting points.</td>
</tr>
<tr>
<td>• Terminals and their connected wires have either positive or negative polarity (Positive: B+, P+; Negative: B-, P-). The polarity of a terminal or a wire connected to the terminal is on the front of each module and switchgear. Exercise extreme caution to prevent terminals and/or wires with opposite polarity from contacting each other.</td>
</tr>
<tr>
<td>• Do not permit either battery terminal to contact the rack frame because it is possible to contact a connection with the opposite polarity.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Covers protect the power terminals on Battery Modules and Switchgear Assemblies to guard against a short circuit. Power terminal covers must be removed before connecting a power busbar. The covers must be reattached immediately.</td>
</tr>
</tbody>
</table>

Verify that the bolts connecting the busbars are properly torqued.

1. Remove the Battery Module front covers and Switchgear B+, B-, P+, P- covers.

Figure 4-17: Remove the front covers
2. Check the torque settings of the bolts on the busbar.

NOTICE
- Connect the power busbar to battery module terminals with an M8 screw.
- The fastening torque should be 8.16–11.94 Nm/80 (117 kgf cm).
- Use an insulated extension torque wrench with a 13 mm socket.

NOTICE
- Connect the power busbar to Switchgear terminals with an M12 screw.
- The fastening torque should be 30 Nm (300 kgf cm).
- Use an insulated extension torque wrench with a 19 mm socket.

Figure 4-18: Reattach the Front Covers

4.2.5 Cell Voltage Balancing

When the battery system is idle – neither charging nor discharging– it will balance the cell voltage if the following conditions are present:

- Minimum cell voltage is above 3.0V.
- Discrepancy between the cell voltage is above the 20mV range.

Cell voltage balancing runs automatically whenever the battery system is idle (neither charging nor discharging).
4.2.6 System Reset

To reset the battery system after a major protection fault, press the “reset button” on the front of the SMPS Assembly Type A. This will reset all protection conditions and return the system to normal status.

NOTICE

- Make sure all protection conditions have been cleared before pressing the reset button.
- Refer to 4.1 Troubleshooting for guides on clearing protection conditions.

![Figure 4-19: Pressing the Reset Button](image)

4.2.7 MCCB Handle Control

CAUTION

- Terminals and their connected wires have either positive or negative polarity (Positive: B+, P+; Negative: B-, P-). The polarity of a terminal or a wire connected to the terminal is on the front of each module and Switchgear. Exercise extreme caution to prevent terminals and/or wires with opposite polarity from contacting each other.
- Do not permit either battery terminal to contact the rack frame because it is possible to contact a connection with the opposite polarity.

WARNING

- Covers protect the power terminals on Battery Modules and Switchgear Assemblies to guard against a short circuit.
- When handling the MCCB, make sure the covers are installed properly.

1. Make sure all major protection is cleared by checking the indicator LED in front of the switchgear. Before handling the MCCB, verify that the indicator LED is in normal status.

<table>
<thead>
<tr>
<th>LED Status</th>
<th>Battery Status</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER LED</td>
<td>Normal Status</td>
<td>MCCB Off</td>
</tr>
</tbody>
</table>

2. If the MCCB handle is in the “TRIP” position, move the handle to the left “OFF” position. If the MCCB handle is already in the “OFF” position, proceed to the next step.
3. Press the handle to the right “ON” position.

4. Check the switchgear indicator LED. Make sure that the indicator LED is in normal status and that the MCCB is on.

<table>
<thead>
<tr>
<th>LED Status</th>
<th>Battery Status</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER Flashing</td>
<td>Normal Status</td>
<td>MCCB On</td>
</tr>
</tbody>
</table>
4.3 Replacement Procedures

WARNING

Arc Flash and Shock Hazard
Appropriate tools are required while working on this energized equipment.

WARNING

Sharp Edges
Wear protective gear, including gloves, when working within the battery system enclosures. Sharp edges can exist and may cause severe injury.

WARNING

Pinch Point
Multiple pinch-points are present in most system components. Be aware that there is a serious risk of injury while working around and in equipment enclosures. These pinch points can cause severe bodily injury.

CAUTION

Heavy object
Can cause muscle strain or back injury. Use lifting aids and proper lifting techniques when moving trays, batteries and other heavy objects.

Verify with a voltmeter that no power is present on the system. Use lock out/tag out procedures to secure the UPS and batteries.

This section will explain the procedures for disassembly and installation of user-replaceable components. Follow the safety instructions when replacing Battery Modules, Rack Fuse, Switchgear Assembly, and SMPS Assembly. Refer to the installation manual for more details.
4.3.1 Wire Harness Replacement

NOTICE
• Use only the proper signal cables. These are specified by the part names in the parts list table of the installation manual.

WARNING
Rack BMS / Module BMS Damage
Do not insert both ends of the signal cable WIRE ASSY MODULE TO MODULE #1 or WIRE ASSY MODULE TO MODULE #2 into the same Battery Module.

4.3.1.1 Switchgear Assembly to Module Wire Harness Replacement

1. Remove the signal cable “WIRE ASSY RACK TO MODULE SHIELDING” between the Switchgear Assembly “MODULE” connector and Module #1 “OUT” connector. Press the tab above each end of the connectors and pull the wires out gently.

2. Install the replacement wire harness signal cable “WIRE ASSY RACK TO MODULE SHIELDING” between the Switchgear Assembly “MODULE” connector and Battery Module #1 “OUT” connector. Pass the cable through the opening above Module #1.
4. Troubleshooting, Repair and Replacement

4.3.1.2 Module to Module Wire Harness Replacement

1. Remove the signal cable “WIRE ASSY MODULE TO MODULE.”
4. Troubleshooting, Repair and Replacement

Figure 4-26: Remove Module to Module Signal Cable

2. Install the replacement signal cable “WIRE ASSY MODULE TO MODULE.”

Figure 4-27: Install Module to Module Signal Cable

4.3.1.3 Switchgear to Switchgear CAN Wire Harness Replacement

1. Remove the CAN wire harness between Switchgear Assemblies.
2. Install the replacement CAN wire harness between switchgears

4.3.1.4 Switchgear to SMPS Assembly CAN Wire Harness Replacement

1. Remove the CAN wire harness between the Switchgear and SMPS Assembly.

2. Install the replacement CAN wire harness between the Switchgear and SMPS Assembly.
4.3.1.5 Switchgear to SMPS Assembly DC Power Wire Harness Replacement

1. Turn the MCCB off.

 ![Figure 4-30: MCCB Handle in “OFF” position](image)

2. Remove the DC power wire harness.

 ![Figure 4-31: DC Power Cables from SMPS Assembly Type A to Switchgear](image)

 ![Figure 4-32: DC Power Cables from SMPS Assembly Type B to Switchgear](image)
3. Install the replacement DC power wire harness

4. Check the indicator LED and make sure it is in normal status.

5. Turn the MCCB on.

Figure 4-33: MCCB Handle in “ON” Position
4.3.2 Battery Module Replacement

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
</table>
| - Follow the instructions exactly to protect the Module BMS and Battery Module from damage.
- DO NOT deviate from the sequence of steps below.
- The voltage of the connected system increases proportionally as battery modules are connected. Exercise extreme caution to prevent the terminals from touching anything other than their intended mounting points.
- Terminals and their connected wires have either positive or negative polarity (Positive: B+, P+; Negative: B-, P-). The polarity of a terminal or a wire connected to the terminal is on the front of each module and switchgear. Exercise extreme caution to prevent terminals and/or wires with opposite polarity from contacting each other.
- Do not permit either battery terminal to contact the rack frame because it is possible to contact a connection with the opposite polarity. |

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
</table>
| - Connect the power busbar to the Battery Module Terminals with an M8 screw. Use an insulated extension torque wrench with a 13 mm socket.
- The fastening torque should be 8.16–11.94 Nm (80–117 kgf cm). |

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
</table>
| - Connect the power busbar to the Switchgear terminals with an M12 bolt. Use an insulated extension torque wrench with a 19 mm socket
- The fastening torque should be 30 N·m (300 kgf·cm). |

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
</table>
| - When charging or discharging the battery module, the following settings must be followed to prevent damaging the battery module.
 - Maximum charge voltage : 33.6V
 - Minimum discharge voltage : 24V
 - Maximum charge current : 22.3A
 - Maximum discharge current : 67A |
1. Identify the defective Battery Module’s type. It must be replaced with an identical Battery Module. Type A’s positive (+) terminal is on the right side when viewed from the front; Type B’s positive (+) terminal is on the left.

2. Turn the MCCB off by pushing the MCCB handle to the “OFF” position.
3. Turn off the AC input to the SMPS Assembly.

4. Remove front covers from all Battery Modules.

![Figure 4-37: Remove Battery Module Front Covers](image)

5. Use a multimeter to measure the voltage of each Battery Module except the defective Battery Module. Record the measurements for reference.

![Figure 4-38: Measuring Each Battery Module’s Voltage](image)

6. Reattach the front covers to all Battery Modules.
7. Charge or discharge the replacement Battery Module to match the average voltage of the other modules.

If the replacement Battery Module’s voltage is higher than the other battery modules, use a controllable load to discharge the battery module to match the voltage to within 300mV of the other Battery Modules’ average voltage.

If the replacement Battery Module’s voltage is lower than the other Battery Modules, use a controllable DC power supply to charge the Battery Module to match the other Battery Modules’ average voltage to within 300mV.

When using a DC power supply to charge the battery module directly, use a switch or a circuit breaker between the battery module’s terminal and the DC power supply’s terminal. Refer to the diagram below.

Before turning the switch or the circuit breaker on, DC power supply’s output voltage must match the Battery Module’s voltage to prevent inrush current from the battery.

Set the DC power supply’s output voltage to the Battery Module’s voltage.

Set the output current to 0A.

Turn the DC power supply’s output on to pre-charge the capacitors within the power supply.

Turn the switch or circuit breaker on
4. Troubleshooting, Repair and Replacement

Raise the output voltage of the DC power supply to the charging voltage.

Set the output current to 22.3A or less.

When the output of the DC power supply reaches the set charging voltage and charging current is decreased to less than 1.34A, stop charging the battery module by disconnecting the switch or circuit breaker.

Turn the DC power supply’s output off.

Disconnect the charged battery module

8. Disconnect the control cables from the defective Battery Module.

![Battery Module Signal Cables](image1)

Figure 4-41: Battery Module Signal Cables

9. Remove the front covers from the defective Battery Module and adjacent Battery Modules.

![Battery Module Front Covers](image2)

Figure 4-42: Battery Module Front Covers

10. Unbolt the positive and negative busbars from the terminals on the defective Battery Module and the adjacent battery modules.
11. Remove the two busbars.

12. Using a rod (a long screwdriver of at least 254mm [10 in.] long may be used), pivot the guide in the Rack Frame to separate the hooks on the Battery Module from the matching hole in the rack frame.

13. Pull out the Battery Module while pivoting the guide and remove the Battery Module from the rack frame.

15. Remove the front cover from the replacement Battery Module and from adjacent Battery Module.

16. Install the busbars.

17. Reattach the front cover to the Battery Module.
18. Reconnect the signal cables.

19. Turn on the AC input to the SMPS Assembly.

20. Check the indicator LED and make sure it is in normal status.

21. Turn the MCCB handle to the “ON” position.
4. Troubleshooting, Repair and Replacement

4.3.3 Rack Fuse Replacement

CAUTION

- Follow the instructions exactly to protect the Module BMS and Battery Module from damage.
- DO NOT deviate from the sequence of the steps below.
- The voltage of the connected system increases proportionally as battery modules are connected. Exercise extreme caution to prevent the terminals from touching anything other than their intended mounting points.
- Exercise extreme caution to prevent terminals and wires from contacting a wire or terminal with the opposite polarity.
- Do not permit either battery terminal to contact the rack frame because it is possible to contact a connection with the opposite polarity.

NOTICE

The Rack Fuse Busbar Assembly is assembled at the installation site using M12 x 16L screws. The fastening torque should be 30 Nm (300 kgf cm).

1. Turn the MCCB off. If multiple strings are installed in parallel, turn the MCCB off for all racks.

![Figure 4-51: MCCB Handle in “OFF” Position](image)

2. Turn off the AC input to the SMPS Assembly.

3. Remove the rack fuse cover.
4. Troubleshooting, Repair and Replacement

Figure 4-52: Removing Rack Fuse Cover

4. Remove front covers from the Battery Modules adjacent to the rack fuse.

Figure 4-53: Remove the Battery Module Front Covers

5. Remove the bolts from the Battery Module terminals that are connected to the rack fuse.
4. Troubleshooting, Repair and Replacement

6. Remove the rack fuse assembly.

7. Remove the busbars and bolts attached to the rack fuse and reattach the busbars and bolts to the replacement rack fuse.

Figure 4-54: Remove the Bolts from Battery Module Terminals

Figure 4-55: Remove the Rack Fuse Assembly

Figure 4-56: Rack Fuse Busbar Assembly
8. Attach the replacement rack fuse with busbars attached.

Figure 4-57: Attach the Replacement Rack Fuse Assembly

9. Assemble the bolts for the Battery Module terminals.

Figure 4-58: Bolts for the Battery Module Terminals

10. Reattach the front covers to the Battery Modules.

Figure 4-59: Battery Module Front Cover

11. Reattach the rack fuse cover.
12. Turn on the AC input to the SMPS Assembly.

13. Check the Switchgear indicator LED and make sure it is in normal status.

14. Turn the MCCB handle to the “ON” position.
4.3.4 Switchgear Replacement

1. Turn the MCCB off. If multiple strings are installed in parallel, turn the MCCB off for all racks.

![MCCB Handle in “OFF” Position](image)

2. Remove the DC input and communication wires from the Battery Module, the adjacent rack and the SMPS Assembly.

![DC IN Cable](image)

![CAN Cable to SMPS Assembly](image)
3. Remove the front cover from the Battery Module on the ninth shelf.

4. Remove the bolts from B+ on Battery Module #16, and from B- on Battery Module #1.
5. Remove terminal covers from the battery terminals.

6. Hold the busbar on its insulated portion and remove the bolts from the terminals for B+, B- terminals.

7. Remove the busbars.
8. Remove the connections to P+, P- terminals. Make sure there is adequate clearance in front of the Switchgear Assembly for its easy removal.

9. Remove screws from the Switchgear Assembly and its ground cable.
10. Remove the Switchgear and insert its replacement.

11. Insert and tighten the screws on the Switchgear and its grounding cable.
12. Reattach the busbars and reinstall the bolts for B+ for Battery Module #16, and B- for Battery Module #1.

13. Reinstall the bolts for B+ and B- terminals.

14. Reinstall the bolts for P+ and P- terminals.

15. Reattach the terminal covers.
16. Reattach the signal cables to the Battery Module, adjacent rack, SMPS Assembly, and DC IN cable.
4. Troubleshooting, Repair and Replacement

Figure 4-80: Switchgear to SMPS Assembly CAN Signal Cable

Figure 4-81: Adjacent Rack CAN Signal Cable

Figure 4-82: DC Power Cables from SMPS Assembly Type A to Switchgear
17. Check the indicator LED and make sure it is in normal status.

18. Turn the MCCB handle to “ON” position.

19. The Rack BMS in the replacement Switchgear must be configured according to the rack configuration. Refer to the “Installation Manual” for details.
4.3.5 SMPS Assembly Replacement

1. Turn off the MCCB.

![MCCB Handle in "OFF" Position](image)

2. Turn off the AC input to the SMPS Assembly.

WARNING

Before working on the AC input terminal connections, use a voltmeter to verify that they are not energized.

3. Remove the protective covers from the AC input terminals.

![AC Input Terminals](image)
4. Remove the AC input cables. Make sure the AC cables are not energized.

Figure 4-87: Cables to the AC Input Terminals

5. Remove the DC OUT connection.

Figure 4-88: DC OUT Connection

6. Remove the BMS CAN connection.

Figure 4-89: BMS CAN Connection
7. Remove the TCP/IP connection.

![Figure 4-90: TCP/IP Connection](image)

8. Remove the dry contact connection.

![Figure 4-91: Dry Contact Connection](image)

9. Unscrew the SMPS Assembly from the rack frame.

![Figure 4-92: Unscrew SMPS Assembly](image)
10. Detach the grounding cable from the rack frame.

![Figure 4-93: Unscrew SMPS Assembly Grounding Cable](image)

11. Remove the SMPS Assembly.

![Figure 4-94: Remove the SMPS Assembly](image)

12. Insert the replacement SMPS Assembly into the rack frame on the shelf designated for it.
13. Attach the SMPS Assembly to the rack frame using screws and torque them to 5.1–6.1 Nm (50–60 kgf cm).

14. Connect the ground cable to the SMPS Assembly.

NOTICE

Connect a ground cable between the SMPS Assembly and the Rack Frame using SCREW M5 x 10L. Torque the screw to 5.1–6.1 Nm (50–60 kgf cm). Double-check that the torque setting is correct.
15. Connect the Switchgear DC power cables.

Figure 4-97: Screw on the SMPS Assembly Grounding Cable

Figure 4-98: DC Power Cables from SMPS Assembly Type A to Switchgear

Figure 4-99: DC Power Cables from SMPS Assembly Type B to Switchgear
16. Connect the signal cable from the SMPS Assembly to the Switchgear “WIRE ASSY RACK TO SYSTEM.”

![Figure 4-100: BMS CAN Cable from SMPS Assembly to Switchgear](image)

17. Connect the TCP/IP Cable.

![Figure 4-101: TCP/IP Cable](image)

18. Connect the dry contact cable.

![Figure 4-102: Dry Contact Cable](image)
19. Remove the protective covers from the AC input terminals.

![Figure 4-103: AC Input Terminals](image)

20. Connect each AC input in the SMPS Assembly. Make sure the AC cables are not energized.¹

![Figure 4-104: AC Input Terminals with Cables Attached](image)

21. Reattach the protective covers to the AC input terminals.

¹ AC cables are not provided. They must be provided by the installer or customer.
22. Turn on the AC input to the SMPS Assembly.

23. Check the indicator LED and make sure it is in normal status.

24. Turn the MCCB handle to the “ON” position.

25. For SMPS Assembly Type A, the System BMS inside the replacement switchgear must be configured according to the battery system configuration. Refer to the installation manual for details.
5. Appendix

5.1 Disposal and Recycling

For recycling, contact the manufacturer.

Contaminated packaging must be disposed in accordance with local regulations.
Memo