3. Operation

3.0. Scope ... 45
3.1 Initial Startup ... 45
3.2 UPS Personalization .. 46
 3.2.1 Accessing Personalization With Front Panel Buttons ... 46
3.3 Information Technology (IT) Network and Industrial Operating Modes 49
 3.3.1 UPS Personalization Through External Software ... 50
 3.3.2 Final Startup Sequence ... 50
3.4 Operating Modes .. 51
 3.4.1 Normal (Double Conversion) Mode ... 51
 3.4.2 ECO Mode ... 52
3.5 Operation on Battery Power ... 53
 3.5.1 Transfer to Battery Power ... 53
3.6 Return of Normal AC Source .. 54
3.7 Shutdown ... 54

4. Maintenance

4.0 Scope ... 55
4.1 Troubleshooting .. 55
4.2 Hot Swapping the Power Module ... 57
4.3 Re-connecting the Power Module .. 58
4.4 Hot Swapping the Battery Module .. 59
 4.4.1 Disconnecting the Battery Module .. 59
 4.4.2 Re-connecting the Battery Module ... 59

5. Appendices

5.0 Electrical Specifications .. 61
5.1 System Input/Output Power Ratings .. 61
5.2 System Overload Characteristics .. 61
5.3 System Back-up Characteristics .. 62
5.4 System Short Circuit Protection ... 62
5.5 Accessories Electrical Characteristics ... 62
5.6 Heat Rejection .. 64
5.7 Environmental Characteristics ... 64
5.8 Glossary ... 67
 Recorder Form .. 70
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Tower Configuration with Power Module, Battery Module, and Optional Transformer Module</td>
<td>16</td>
</tr>
<tr>
<td>1-2</td>
<td>Rack Configuration with Power Module, Battery Module, and Optional Transformer Module</td>
<td>17</td>
</tr>
<tr>
<td>1-3</td>
<td>Rear Panel of the Power Module</td>
<td>18</td>
</tr>
<tr>
<td>1-4</td>
<td>Rear Panel of the Battery Module</td>
<td>18</td>
</tr>
<tr>
<td>1-5</td>
<td>Rear Panel of the Optional Transformer Module (PN 86211)</td>
<td>19</td>
</tr>
<tr>
<td>1-6</td>
<td>View of Typical Control Panel Interface</td>
<td>19</td>
</tr>
<tr>
<td>1-7</td>
<td>Power Module Rail Kit</td>
<td>20</td>
</tr>
<tr>
<td>1-8</td>
<td>Battery/Transformer/CLA Module Rail Kit</td>
<td>20</td>
</tr>
<tr>
<td>1-9</td>
<td>Typical Back-Up Time With Multiple EXBs at Full Load</td>
<td>21</td>
</tr>
<tr>
<td>1-10</td>
<td>Typical Battery Integration Kit with Casters Setup</td>
<td>22</td>
</tr>
<tr>
<td>1-11</td>
<td>Typical Transformer Module Contents and Connections</td>
<td>23</td>
</tr>
<tr>
<td>1-12</td>
<td>CLA Module Contents and Connections</td>
<td>24</td>
</tr>
<tr>
<td>2-1</td>
<td>Contents of EX RT 5/7/11 Power Module</td>
<td>26</td>
</tr>
<tr>
<td>2-2</td>
<td>Contents of EX RT EXB 5/7/11 Battery Module</td>
<td>27</td>
</tr>
<tr>
<td>2-3</td>
<td>Tower Configuration of Standard System and Optional Transformer Module</td>
<td>28</td>
</tr>
<tr>
<td>2-4</td>
<td>Typical Orientation of the Logo and Control Panel (Power Module Shown)</td>
<td>29</td>
</tr>
<tr>
<td>2-5</td>
<td>Accessing Battery Pack</td>
<td>30</td>
</tr>
<tr>
<td>2-6</td>
<td>Rack Mounting of the Power Module Onto the Rails</td>
<td>31</td>
</tr>
<tr>
<td>2-7</td>
<td>Input/Output Box Bracket System</td>
<td>32</td>
</tr>
<tr>
<td>2-8</td>
<td>RS232 Communication Cable Connection</td>
<td>33</td>
</tr>
<tr>
<td>2-9</td>
<td>Relay Pin Connections for Communication Port</td>
<td>34</td>
</tr>
<tr>
<td>2-10</td>
<td>Communication Card Slot with Network Management Card Installed</td>
<td>34</td>
</tr>
<tr>
<td>2-10a</td>
<td>Activation of Remote Emergency Power Off Function Using a Contact Normally Open Switch</td>
<td>36</td>
</tr>
<tr>
<td>2-10b</td>
<td>Activation of Remote Emergency Power Off Using a Contact Normally Closed Switch</td>
<td>36</td>
</tr>
<tr>
<td>2-11</td>
<td>Power Module I/O Box Terminal Block Diagram</td>
<td>37</td>
</tr>
<tr>
<td>2-12</td>
<td>Normal AC Input and Output Cables Installation</td>
<td>38</td>
</tr>
<tr>
<td>2-13</td>
<td>View of EX RT Transformer Module Connected Downstream for 120/208/240 VAC Outputs (Shown With One EXB)</td>
<td>39</td>
</tr>
<tr>
<td>2-14</td>
<td>Normal AC Input, Bypass AC, and Output Cables Installation, and Simplified Connection Diagram</td>
<td>40</td>
</tr>
<tr>
<td>2-15</td>
<td>Accessing Terminal Blocks for Input and Output Power Cables</td>
<td>41</td>
</tr>
<tr>
<td>2-16</td>
<td>Rear View of Battery Module Cable Connections</td>
<td>42</td>
</tr>
<tr>
<td>2-17</td>
<td>Rear View of CLA Module Cable Battery and AC Input Connections</td>
<td>43</td>
</tr>
<tr>
<td>3-1</td>
<td>Initial Startup Display</td>
<td>45</td>
</tr>
<tr>
<td>3-2</td>
<td>Control Panel with Scroll Up and Down Buttons</td>
<td>46</td>
</tr>
<tr>
<td>3-3</td>
<td>Configuration Used to Provide Cascade Redundancy to Critical Loads</td>
<td>47</td>
</tr>
<tr>
<td>3-4</td>
<td>Normal (Double Conversion) Mode</td>
<td>51</td>
</tr>
<tr>
<td>3-5</td>
<td>ECO Mode Display</td>
<td>52</td>
</tr>
<tr>
<td>3-6</td>
<td>Transfer, Threshold, and End of Back-up Time</td>
<td>53</td>
</tr>
<tr>
<td>3-7</td>
<td>Shutdown Display, Circuit Breaker, and AC Source Switch</td>
<td>54</td>
</tr>
</tbody>
</table>
4-1: Disconnecting the Power Module ... 57
4-2: Reconnect the Power Module ... 58
4-3: Rear view of the Battery Module ... 59
5-1: Power Supplied as a Function of Input Voltage (Left), and Permissible UPS Overloads as a Function of Time (Right) 61

Tables
Table Description .. Page
1-1: EX RT Model Descriptions and Contents .. 13
1-2: Optional Accessories (See Section 1.5 for Description) 14
1-3: UPS Characteristics System Ratings .. 15
1-4: Transformer Module Characteristics Ratings 15
1-5: Battery Module Ratings .. 16
1-6: System Dimensions and Weights ... 17
1-7: Battery Back-up Time Chart ... 24
3-1: Local Settings ... 47
3-2: Output Features .. 47
3-3: ON/OFF Features .. 48
3-4: Battery Features .. 48
3-5: System Operation in I/T and Industrial Modes 49
4-1: Troubleshooting Not Requiring EATON After-Sales Support 55
4-2: Troubleshooting Requiring EATON After-Sales Support 56
5-1: EX RT 5/7/11 Voltages and Frequency Characteristics 61
5-2: Back-up Time (in minutes) .. 62
5-3: Battery Recharge Time to Recover 90% of the Rated Back-up Time After Discharge at Full Load ... 63
5-4: Efficiency Online (RL Load) and Batteries Fully Charged 63
5-5: Efficiency Online (RCD Load) and Batteries Fully Charged 63
5-6: Efficiency On Battery (RCD Load) ... 63
5-7: Efficiency On ECO Mode (All Kinds of Load) and Batteries Fully Charged ... 64
5-8: Full Load Heat Rejection in BTUs/hr ... 64
IMPORTANT SAFETY INSTRUCTIONS

SAVE THESE INSTRUCTIONS. This manual contains important instructions that should be followed during installation and maintenance of the UPS and batteries.

The EX RT 5/7/11 models that are covered in this manual are intended for installation in an environment within 0 to 40°C, free of conductive contaminant.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Certification Standards

- FCC rules and regulations of Part 15, Subpart J, Class A
- UL listed under 1778, Standards for Uninterruptible Power Supply Equipment
- IEC 61000-4-2 (ESD): level 4
- IEC 61000-4-3 (Radiated field): level 3
- IEC 61000-4-4 (EFT): level 4
- IEC 61000-4-5 (Fast transients): level 4
- IEEE-C6241 Category B (ring wave)
- IEC 61000-4-6 (electromagnetic field)
- IEC 61000-4-8 (conducted magnetic field)
CAUTION: Safety of persons

- The system has its own power source (the battery). Consequently, the power outlets may be energized even if the systems is disconnected from the AC power source.
- Dangerous voltage levels are present within the system. It should be opened exclusively by qualified service personnel.
- The system must be properly grounded.
- The battery supplied with the system contains small amounts of toxic materials. To avoid accidents, the directives listed below must be observed:
 - Never burn the battery (risk of explosion).
 - Do not attempt to open the battery (the electrolyte is dangerous for the eyes and skin).
 - Comply with all applicable regulations for the disposal of the battery.
 - Batteries constitute a danger (electrical shock, burns). The short-circuit current may be very high. Precautions must be taken for all handling: remove watches, rings, bracelets and any other metal objects, use tools with insulated handles.
 - Do not lay tools or metal parts on top of batteries.

CAUTION: Product Safety

- The UPS connection instructions and operation described in the manual must be followed in the indicated order.
- A protection circuit breaker must be installed upstream and be easily accessible. The system can be disconnected from the AC power source by opening this circuit breaker.
- Check that the indications on the rating plate correspond to your AC powered system and to the actual electrical consumption of all the equipment to be connected to the system.
- Never install the system near liquids or in an excessively damp environment.
- Never let a foreign body penetrate inside the system.
- Never block the ventilation grates of the system.
- Never expose the system to direct sunlight or source of heat.
- If the system must be stored prior to installation, storage must be in a dry place.
- The admissible storage temperature range is -25°C to +55°C.

Special Precautions

- All handling operations will require at least two people (unpacking, installation in rack system).
- Before and after the installation, if the UPS remains de-energized for a long period, the UPS must be energized for a period of 24 hours, at least once every 6 months (for a normal storage temperature less than 25°C). This charges the battery, thus avoiding possible irreversible damage.
- During the replacement of the Battery Module, it is imperative to use the same type and number of element as the original Battery Module provided with the UPS to maintain an identical level of performance and safety. In case of doubt, don’t hesitate to contact your EATON representative.

Environment

- This product has been designed to respect the environment:
 It does not contain any Chlorofluorocarbon (CFC) or Hydrochlorofluorocarbon (HCFC).
- UPS recycling at the end of service life:
 EATON undertakes to recycle, by certified companies and in compliance with all applicable regulations, all UPS products recovered at the end of their service life (contact your EATON branch office).
- Packing:
 UPS packing materials must be recycled in compliance with all applicable regulations.

WARNING: This product contains lead-acid batteries. Lead is a dangerous substance for the environment if it is not properly recycled by specialized companies.
CAUTION: Record All Serial Numbers!

RECORD ALL SERIAL NUMBERS FOR EX RT 5/7/11 AND ACCESSORIES.
THESE SERIAL NUMBERS WILL BE REQUIRED IF YOUR SYSTEM NEEDS SERVICE.
KEEP THIS MANUAL IN A PLACE WHERE YOU CAN REFERENCE THE SERIAL NUMBERS IF SERVICE IS REQUIRED!

☐ EX RT 5 System ☐ EX RT 7 System ☐ EX RT 11 System

Power Module SERIAL NUMBER: __

Battery Module SERIAL NUMBER: __

Transformer Module SERIAL NUMBER: __

CLA Module SERIAL NUMBER: __

ADDITIONAL MODULES SERIAL NUMBERS:

__ ______________________________

__ ______________________________

__ ______________________________

__ ______________________________

__ ______________________________

__ ______________________________

__ ______________________________

__ ______________________________
Symbol Usage

This manual uses the following icon symbols with text to convey important information and tips.

WARNING Indicates information provided to protect the user and service personnel against safety hazards and/or possible equipment damage.

CAUTION Indicates information provided to protect the user and service personnel against possible equipment damage.

IMPORTANT Indicates information provided as an operating instruction, or as an operating tip.

NOTE Indicates information provided as an operating tip or an equipment feature.

Visual Action Audio LED OFF LED ON LED Flashing

Section Descriptions

1 Introduction
Introduction is a general description of system configurations of the EX RT 5/7/11, and its mechanical electrical characteristics. Additionally there is an optional accessories section with important information on EATON products that will enhance the performance of the EX RT 5/7/11. Please contact your EATON representative for detailed information on these options.

2 Setup and Installation
Setup and Installation guides the user through tools and equipment required for connecting the EX RT 5/7/11 and battery installation or replacement. Included are assembly instructions, power cable connections with wire diagrams for configuring the product to hardware specifications.

3 Operation
Operation describes the EX RT 5/7/11 systems characteristics of indicators and controls, modes, and specifications. The user procedures include performing software programming that will maintain optimal performance.

4 Maintenance
Maintenance includes a troubleshooting guide of symptoms and possible solutions, hot swapping the Power module, Battery module, and testing scenarios.

5 Appendix
Electrical and Mechanical specifications for the EX RT 5/7/11.
(This page left blank intentionally)
1. Introduction

Thank you for selecting an EATON product to protect your electrical equipment. The product you selected is a part of the EX RT series. The EX RT series is a family of Uninterruptible Power Supply (UPS) designed to provide safe, and reliable AC power back-up for sensitive electrical equipment. To discover the entire range of EATON products, we invite you to visit our website at www.eaton.com.

1.0 Scope

Introduction is a general description of system configurations of the EX RT 5/7/11, and its mechanical electrical characteristics. Additionally there is an optional accessories section with important information on EATON products that will enhance the performance of the EX RT 5/7/11. Please contact your EATON representative for detailed information on these options.

Table 1-1: EX RT Model Descriptions and Contents.

<table>
<thead>
<tr>
<th>System Description</th>
<th>System Contents</th>
<th>Output Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power Module</td>
<td>Battery Module</td>
</tr>
<tr>
<td></td>
<td>86215</td>
<td>86216</td>
</tr>
<tr>
<td>5 kVA HV EX RT 5</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5 kVA LV EX RT 5</td>
<td>86201</td>
<td>X</td>
</tr>
<tr>
<td>7 kVA HV EX RT 7</td>
<td>86070</td>
<td>X</td>
</tr>
<tr>
<td>7 kVA LV EX RT 7</td>
<td>86203</td>
<td>X</td>
</tr>
<tr>
<td>11 kVA HV EX RT 11</td>
<td>86110</td>
<td>X</td>
</tr>
<tr>
<td>11 kVA LV EX RT 11</td>
<td>86205</td>
<td>X</td>
</tr>
</tbody>
</table>

Also: All units include rail kits for rack mounting and stabilizing feet for tower configuration.

NOTE

The Power Module is factory configured for single Mains input at 208 VAC, 60 Hz. Other input-output voltage settings are available. See Section 3.2.1. Input voltage must be the same as output voltage on HV units!
1. Introduction

Table 1-2: Optional Accessories (See Section 1.5 for description)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>86001</td>
<td>Rail Kit for Power Module EX RT 5/7/11</td>
</tr>
<tr>
<td>86002</td>
<td>Rail Kit for Battery/Transformer/CLA Module</td>
</tr>
<tr>
<td>86005</td>
<td>Battery Integration Kit with Casters</td>
</tr>
<tr>
<td>86006</td>
<td>Battery Extension Cable Kit</td>
</tr>
<tr>
<td>86008</td>
<td>Empty Battery Chassis EXB RT W/EPO</td>
</tr>
<tr>
<td>86009</td>
<td>I/O Box 5/7 kVA UL/US</td>
</tr>
<tr>
<td>86010</td>
<td>I/O Box 11 kVA UL/US</td>
</tr>
<tr>
<td>86012</td>
<td>I/O Box Bracket System</td>
</tr>
<tr>
<td>86013</td>
<td>Rear Bracket Supports</td>
</tr>
<tr>
<td>86207</td>
<td>Battery Module EXB 5/7RT</td>
</tr>
<tr>
<td>86209</td>
<td>Battery Module EXB 11RT</td>
</tr>
<tr>
<td>86211</td>
<td>EX RT Transformer Module (11 kVA)</td>
</tr>
<tr>
<td>86213</td>
<td>CLA Charger Module</td>
</tr>
<tr>
<td>86215</td>
<td>5 kVA Power Module EX RT 5</td>
</tr>
<tr>
<td>86216</td>
<td>7 kVA Power Module EX RT 7</td>
</tr>
<tr>
<td>86217</td>
<td>11 kVA Power Module EX RT 11</td>
</tr>
<tr>
<td>86311</td>
<td>EX RT Transformer Module (7 kVA)</td>
</tr>
</tbody>
</table>
1.1 System Electrical Characteristics

Table 1-3: UPS Characteristics System Ratings.

<table>
<thead>
<tr>
<th>UPS Characteristics</th>
<th>MAIN 1 (Normal AC Source) default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Rating (kVA)</td>
<td>Input Voltage (VAC)</td>
</tr>
<tr>
<td>5 kVA</td>
<td>208</td>
</tr>
<tr>
<td>7 kVA</td>
<td>25</td>
</tr>
<tr>
<td>11 kVA</td>
<td>38</td>
</tr>
</tbody>
</table>

Table 1-4: Transformer Module Characteristics Ratings.

<table>
<thead>
<tr>
<th>Transformer Module Characteristics</th>
<th>Input Voltage (VAC)</th>
<th>Output Voltage (VAC)</th>
<th>Max. Output Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>208/240</td>
<td>120/120</td>
<td>33.3/33.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>208</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>240</td>
<td>45</td>
</tr>
</tbody>
</table>

CAUTION

Power Module is factory configured at 208 Vac, 60 Hz input and output. Without transformer, Input and Output of the UPS must always be the same. On 11 KVA, 10% de-rating for 200/208 VAC. Isolated 120/208/240 VAC are available with EX RT Transformer Module.
1. Introduction

Table 1-5: Battery Module Ratings.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>86207</th>
<th>86209</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Type</td>
<td>12 VDC/7 Ah</td>
<td>12 VDC/9 Ah</td>
</tr>
<tr>
<td>Battery Output Voltage</td>
<td>240 VDC</td>
<td>240 VDC</td>
</tr>
</tbody>
</table>

1.2 Standard Configuration

The EX RT 5/7/11 systems can be set up in tower or rack configurations.

1.2.1 Tower Configuration

Figure 1-1: Tower Configuration with Power Module, Battery Module, and optional Transformer Module.
1.2.2 Rack Configuration

Figure 1-2: Rack Configuration with Power Module, Battery Module, and optional Transformer Module.

Standard Configuration

- **POWER MODULE**
 - (EX RT 5/7/11)
- **BATTERY MODULE**
 - (EX RT EXB 5/7/11)

Configuration with Transformer

- **TRANSFORMER MODULE**
 - (EX RT 5/7/11)

Table 1-6: System Dimensions and Weights.

<table>
<thead>
<tr>
<th>Model</th>
<th>Dimensions (HxWxD)</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX RT 5/7 Power Module</td>
<td>(3U) 5.16” x 17.49” x 26.25” (131 x 444 x 667 mm)</td>
<td>49.6 lbs (22.5 kg)</td>
</tr>
<tr>
<td>EX RT 11 Power Module</td>
<td>(3U) 5.16” x 17.49” x 26.25” (131 x 444 x 667 mm)</td>
<td>60.6 lbs (27.6 kg)</td>
</tr>
<tr>
<td>EX RT EXB 5/7 Battery Module</td>
<td>(3U) 5.16” x 17.49” x 25” (131 x 444 x 635 mm)</td>
<td>142 lbs (64.5 kg)</td>
</tr>
<tr>
<td>EX RT EXB 11 Battery Module</td>
<td>(3U) 5.16” x 17.49” x 25” (131 x 444 x 635 mm)</td>
<td>151 lbs (68.5 kg)</td>
</tr>
<tr>
<td>EX RT Transformer Module (11 kVA)</td>
<td>(3U) 5.16” x 17.49” x 25” (131 x 444 x 635 mm)</td>
<td>173 lbs (78.5 kg)</td>
</tr>
<tr>
<td>CLA Charger Module</td>
<td>(3U) 5.16” x 17.5” x 25</td>
<td>26.5 lbs (12 kg)</td>
</tr>
<tr>
<td>EX RT Transformer Module (7 kVA)</td>
<td>(3U) 5.16” x 17.49” x 25” (131 x 444 x 635 mm)</td>
<td>173 lbs (78.5 kg)</td>
</tr>
</tbody>
</table>
1. Introduction

1.3 Rear Panel Components

1.3.1 Power Module EX RT 5/7/11

Figure 1-3: Rear panel of the Power Module.

1. Slot for optional communication cards.
2. Dry (relay) contacts Communication Port.
3. Remote Emergency Power Off (REPO function. (See Section 2.6.)
4. Connector for automatic detection of Battery Module(s).
5. RS232 communication port.
6. Battery/CLA Module power connector.
10. Knockout for entry of Normal AC source conduit.
11. Knockout for entry of Bypass AC source conduit.

1.3.2 Battery Module EX RT EXB 5/7/11 With Remote Emergency Power Off (REPO) Function

Figure 1-4: Rear Panel of the Battery Module.

12. Connectors for automatic detection of additional battery module(s) (to the UPS or to other Battery Modules).
13. Battery power connectors (to the UPS or to other Battery Modules).
1.3.3 EX RT Transformer Module

Figure 1-5: Rear Panel of the optional Transformer Module (PN 86211/86311)

![Diagram of EX RT Transformer Module]

- Load 1: 1 NEMA L6-30R, 208 Vac
- Load 2: 4 NEMA 5-15/20R, 120 Vac
- Load 3: 1 NEMA L6-30R, 208 Vac
- Load 4: 4 NEMA 5-15/20R, 120 Vac

1.4 Power Module Display and Control Panel

Figure 1-6: View of typical control panel interface.

15. Load protected/On-line Operation LED.
16. Operation on battery LED.
17. Operation on bypass LED.
18. Fault LED.
19. LCD display.
20. UPS OFF button.
21. Function buttons (scroll up-scroll down).
22. UPS ON button (or function button in personalization mode).
1. Introduction

1.5 Optional Accessories

Optional Accessories describes the options available for upgrades and enhancement of the EX RT 5/7/11 systems. Detailed installation of the unit is described in following sections.

To ensure a successful installation, all procedures should be followed in their correct sequence. Note that any unauthorized installation may cause damage to the UPS(s) and void the EATON warranty.

1.5.1 Power Module Rail Kit

(Part Number 86001)

This kit is for rack mounting the Power Module in a 19” enclosure. See Section 2.4.3 for rack installation of Power Module.

Figure 1-7: Power Module Rail Kit.

1.5.2 Battery/Transformer/CLA Module Rail Kit

(Part number 86002)

This kit is for rack mounting of the Battery/Transformer/CLA Module in 19” enclosure. See Section 2.4.3 for rack installation of module.

Figure 1-8: Battery/Transformer/CLA Module Rail Kit.
1.5.3 Multiple Battery Module Back-up Time at Full Load

Standard EX RT 5/7/11 systems (one Power Module and one Battery Module), offers a standard back-up time of 5 to 12 minutes at full load.

To increase back-up time, it is possible to connect up to 5 additional Battery Modules to the standard system. See Section 2.8 for connections between standard system and Battery Module (EX RT EXB 5/7/11).

Figure 1-9: Typical back-up time with multiple EXB’s at full load.

See Appendix for additional Back-up time information.

1.5.4 Battery Extension Cable Kit

(6 ft./1.8 m, Part number 86006)

This extended battery cable kit will be used instead of the standard battery cable when Battery Modules (EXBs) are distant from each other (located in two different enclosures, for instance).

The battery extension cable kit includes a 6 ft. long, straight connector battery power cable, and a 6 ft. long battery detection cable.
1. Introduction

1.5.5 Battery Integration Kit with Casters

(Part number 86005)
Battery Integration Kit is a cart, designed to hold up to 8 modules. It has swivel wheels with brakes, leveling feet, seismic floor mount panels, plates to lock modules and hardware included. Modules not included.

Figure 1-10: Typical Battery Integration kit with casters setup.

1.5.6 Input/Output Box

- I/O Box 5/7 kVA Part number 86009
- I/O Box 11 kVA Part number 86010
1.5.7 Transformer Module - For use with EX RT 5/7/11 Power Module

This module provides isolated 120/208/240 VAC outputs.

Figure 1-11: Typical Transformer Module Contents and Connections.

EX RT Transformer Module Box Contents

- EX RT Transformer Quick Start Manual
- Warranty and Product Registration
- Tower Stand Extenders
- Stabilizer Bracket (4 screws included)
- Transformer Cable
- Transformer Rail Kit
1. Introduction

1.5.8 CLA Charger Module

Extended back-up time (up to 8 hours at full load) requires a high power battery cabinet connected to the EX RT 5/7/11 via the CLA Module.

IMPORTANT
The CLA can not be used to charge the Battery Module (EXB). It is designed to charge the customer provided high power battery cabinet.

Figure 1-12: CLA Module Contents and Connections.

CLA Module Contents

- CLA Module Quick Start
- Tower Stand Expanders
- CLA Rail Kit
- Battery Power Cable
- Battery Detection Cable
- Stabilizer Bracket (4 screws included)

Figure 1-12: CLA Module Contents and Connections.

CLA Module Contents

- CLA
- EX RT 5/7/11
- Optional High Power Battery Cabinet (not included)
- 15 A Utility AC Source (cable not included)
- (see section 2.9 for cable connection information)
- (cable w/battery not included)

Table 1-7: Battery back-up time chart.

Total battery voltage: 240 VDC (20 x 12VDC, one string).

<table>
<thead>
<tr>
<th>Battery Back-up Time</th>
<th>Recommended Batteries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EX RT 5</td>
</tr>
<tr>
<td>2 hours</td>
<td>50 Ah</td>
</tr>
<tr>
<td>4 hours</td>
<td>100 Ah</td>
</tr>
<tr>
<td>8 hours</td>
<td>200 Ah</td>
</tr>
</tbody>
</table>

IMPORTANT
The battery capacity must be set within the UPS (5 Ah increment)
See UPS Personalization Section 3.2.
2. Setup and Installation

2.0 Scope

Setup and Installation guides the user through tools and equipment required for connecting the EX RT 5/7/11, and battery installation or replacement. Included are assembly instructions, power cable connections with wire diagrams for configuring the product to hardware specifications.

2.1 Unpacking and Parts Check

Once the EX RT 5/7/11 systems has been inspected and received from the shipping courier, the unit should be moved to a position as close to the final installation location as possible. See Figures 2-1, on Page 2 — 2.

All Modules are shipped in separate boxes.

Prior to any installation, the following items should be observed upon receipt of the EX RT 5/7/11.

1. Inspect shipment for any damage prior to receipt. Damage claims should be filed directly with the courier. Replacements for damaged components should be ordered through EATON Customer Support Services at (800) 356-5794.

2. Remove wrapping and foam corners to verify that the equipment nameplate (located on the rear of the units) details a system that corresponds with the equipment ordered.
2. Setup and Installation

2.2 Contents of Standard EX RT 5/7/11 Systems

Contents of EX RT 5/7/11 Power Module (PN 86215 / 86216 / 86217):

- 30 EX RT 5/7/11 Power Module.
- 31 Two sets of tower stands.
- 32 RS232 communication cable.
- 33 Product documentation.
- 34 Input/Output Box. (PN 86009 for EX RT 5/7; 86010 for EX RT 11)
- 35 Solution-Pac 2 CD.
- 36 Power Module Rail Kit, PN 86001.

IMPORTANT

Packaging must be destroyed according to waste management standards.
Recycling icons are displayed for easy selection.

Figure 2-1: Contents of EX RT 5/7/11 Power Module.

- I/O Box 5/7 kVA Part number: 86009
- I/O Box 11 kVA Part number: 86010
2. Setup and Installation

Contents of EX RT EXB 5/7/11 Battery Module: (PN 86207 /86209)

- 29 Stabilizer Bracket and hardware.
- 38 EX RT EXB 5/7/11.
- 39 Tower stand expanders.
- 40 Battery Power cable.
- 41 Battery/EX RT Transformer/CLA Module rail kit, PN 86002.
- 42 Battery detection cable.
- 43 EXB Documentation.
- 44 Bezel hex drive.

Figure 2-2: Contents of EX RT EXB 5/7/11 Battery Module.

- EX RT EXB 5 Battery Module Part number: 86207.
- EX RT EXB 7 Battery Module Part number: 86207.
- EX RT EXB 11 Battery Module Part number: 86209.
2. Setup and Installation

2.3 Installation in Tower Configuration

Follow the numerical sequence to assemble tower stands and tower stand expanders, shown in Figure 2-3.

Figure 2-3: Tower Configuration of Standard

Tower Configuration with Standard System

Use the same procedure for tower mounting multiple battery modules, if applicable.
2. Setup and Installation

2.4 Installation in Rack Mounting Configuration

2.4.1 Adjustment of Front Panel Logo and Control Panel for Rack Orientation.

NOTE
If system includes the Transformer Module, we recommend to mount the Battery Module on the bottom, then mount the Power Module above the Battery Module and mount the Transformer Module on top for optimum stability.

To prepare the front panel logo and LCD display for rack orientation, of all modules. (including Transformer or CLA Module, if equipped).

Proceed as follows:
1. Unclip logo plate and pull the LCD display from front panel.
2. Rotate them 90 degree counter clockwise as shown.
3. Place items back onto the panel.

Figure 2-4: Typical Orientation of the Logo and Control Panel. (Power Module Shown)
2. Setup and Installation

2.4.2 Prepare Battery Module for Rack Mounting

IMPORTANT This step requires two people.

The Battery Module is very heavy (151 lbs.). To ease its rack mounting, you can remove the battery pack from the Battery Module, as explained below.

Proceed as follows:

1. Unscrew the six screws securing front panel using Bezel hex driver 44.
2. Unscrew the brackets securing the battery connectors.
3. Disconnect Battery plugs.
4. Unscrew the brackets securing the battery pack. Remove battery bracket pack covers.
5. Pull the left and right battery packs out and set aside for reinstalling after the Battery Module cabinet has been rack mounted.
6. Mount Battery Module cabinet on rack.
7. Re-install the battery pack in reverse order.

Figure 2-5: Accessing Battery Pack.
2. Setup and Installation

2.4.3 Power, Battery, Transformer, and CLA Charger Module Rack Mounting

The following steps apply to all modules. For simplicity, only Power Module is shown. Proceed as follows:

1. Attach both front mounting ear brackets 24 to module with supplied screws. (For this step, it is possible to adjust the position of both front mounting brackets.)

2. Attach rear support brackets 25 to module. These brackets prevent the module from sliding out of the rack.

3. Attach rails 26 together, secure with wing nuts, and finger tighten. (both sides).

4. Attach both rails to rear and front of rack with supplied flathead screws (as shown).

5. Use caution when sliding unit into rack. Temporarily secure unit to rack with thumb screws on front mounting brackets.

6. Secure rear support brackets to rails.

Figure 2-6: Rack mounting of the Power Module onto the rails.
2. Setup and Installation

NOTE

This step is unique to the Power Module. It involves the installation of the I/O Box Bracket System.

The I/O Box bracket system keeps the I/O Box stationary while hot swapping the Power Module. It will then be easier to slide the replacement module into the connectors of the I/O Box.

1&2. Secure small brackets to larger bracket from the underside.

3. Secure small attached brackets to the I/O Box with four screws.

4. Secure large bracket to rails at the rear of module with four nuts.

Install input/output cables per section 2.7 prior to this step.

Figure 2-7: Input/Output Box Bracket System.
2.5 Communication Ports

EX RT 5/7/11 Power Module provides 3 communication method’s that can be used simultaneously:

- A female DB9 provides RS232 communications using EATON Serial HID UPS Transfer (SHUT) protocol. This COM Port is compatible with Solution Pac 2 to perform graceful shutdown.

- The Dry Contact Port is used for basic signaling or for protection of IT systems like IBM iSeries (formerly AS400) and more.

- The slot is compatible with most EATON Transverse communication card (See Section 2.5.3 or check www.eaton.com for the complete list of compatible cards).

2.5.1 Connecting the RS232 Communication Port

1. Connect the RS232 communications cable to the serial port on the computer.

2. Connect the other end of the communications cable to the RS232 communications port on the EX RT 5/7/11.

The EX RT 5/7/11 systems can now communicate with Solution Pac 2 for power management. UPS configuration settings are done by Personal Solution Pac for Windows or through the LCD screen on the front panel (See Section 3.2).

Figure 2-8: RS232 Communication Cable Connection.
2. Setup and Installation

2.5.2 Connecting the Dry (Relay) Contact Communication Port

The system status is indicated by the connection of common pin (Pin 5) to the appropriate pins. Refer to the pin explanations below for details.

Figure 2-9: Relay Pin Connections for Communication Port.

Pin 1, 2: not used.
Pin 3: Remote Power Off signal (5 to 27 VDC, 10 mA max).
Pin 4: Operation on mains (not on battery) (48 VDC, 2A max.)
Pin 5: User common.
Pin 6: Operation on automatic bypass.
Pin 7: Low battery.
Pin 8: Load protected
Pin 9: Operation on battery.

Legend:
NO: contact normally open.
NC: contact normally closed.

When the status is active, the contact between the common (Pin 5) and the relevant information pin is closed.

2.5.3 Installation of Optional Transverse Card

It is not necessary to shut down the UPS to install the optional communications card, except for USB card. Following is a typical installation of the Transverse card (optional Network Management card PN 66074 is shown below).

Proceed as follows:
1. Remove the slot cover secured by two screws.
2. Insert the Transverse card into the slot ①.
3. Secure the card with both screws.
4. Refer to user manual of the Network Management Card for set-up.

Figure 2-10: Communication Card Slot with Network Management Card installed.
A wide range of optional cards will allow your UPS to talk to nearly all equipment management systems, making integration faster and easier. All these cards can plug directly into the UPS, saving time and money on your next UPS project (Meta UPS Card and U-Talk/Basic Acquisition Cards are used exclusively with Multi-slot).

Dual U-Talk/Basic Card
(PN: 66060) CAN NOT BE USED WITH THIS UPS.

JBus Card
(PN: 66061) Provides RS232 and RS485 connections for using the JBUS/ModBus protocol. Both connections are female DB9. Only one connector can be used for proper operation.

Dual port SHUT Card
(PN: 66066) Has two independent female DB9 communication ports that use Serial HID UPS Transfer (SHUT) protocol. Used with the UPS Control LCD display.

USB Card
(PN: 66067) For direct communications (via USB) with the customer's server and automatic UPS recognition by the power management software of Windows 2000, XP or 2003 Server, or Macintosh OS 9 and 10.

Dual port AS/400 Relay Status Card
(PN: 66068) CAN NOT BE USED WITH THIS UPS.

6 Alarm Relay Card
(PN: 66069) Provides status in the form of 6 Alarm relays (250V 2A rated relays). Connection provided are 12 terminal block wire clips.

XML-Web Card
(PN: 66073) Features a web interface and keeps log files about UPS operation.

Network Management Card
(PN: 66074) Features a web interface, Simple Network Management Protocol (SNMP), Simple Mail Transfer Protocol (SMTP) email notification and keeps log files about UPS operation.

Environmental Sensor
(PN: 66846) For Network Management Card: Monitors temperature, humidity, and status of 2 dry contact inputs.
2. Setup and Installation

2.6 Remote Emergency Power Off (REPO) Communication Port

The end user is responsible for the installation of a Remote Emergency Power Off function. Installation must be carried out in compliance with local code regulations.

To shutdown the entire system completely in case of emergency:
- Disconnect the AC input to the Power Module by opening up the upstream circuit breaker connecting the utility power to the Power Module.
- Turn off the circuit breaker of the Battery Module connecting to the Power Module.
- Turn off the circuit breaker of the subsequent Battery Modules, if applicable.

All these steps above should be performed via a single device.

To simplify the last two steps, the Power Module provides an RJ-11, six contact connector on the back panel, called Remote Emergency Power Off (REPO) port. Upon applying a voltage source (5-27 VDC, 10 mA max.) to pins 2, 4 of this port, the Power Module will send a signal to trip off the shunt trip on each circuit breaker of all Battery Modules via the battery detection cable simultaneously. Refer to the diagram below for details.

Figure 2-10a: Activation of Remote Emergency Power Off function using a contact normally open switch.

![Activation of Remote Emergency Power Off function using a contact normally open switch.](image)

Figure 2-10b: Activation of Remote Emergency Power Off using a contact normally closed switch.

![Activation of Remote Emergency Power Off using a contact normally closed switch.](image)
2.7 System Connections

WARNING This type of connections must be carried out by qualified electrical personnel. Before carrying out any connections, check that battery circuit breaker 14 is OFF and that the upstream protection devices (Normal and Bypass AC sources) are open (OFF/OPEN).

2.7.1 Connections with Common Normal and Bypass AC Sources (Single Mains)

Figure 2-11: Power Module I/O Box Terminal Block Diagram.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L6</td>
<td>L5</td>
<td>L2</td>
</tr>
<tr>
<td>L1</td>
<td>L1</td>
<td>L4</td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>L3</td>
</tr>
</tbody>
</table>

Terminal block capacity:
- Max. 4AWG (EX RT 11)
- Max. 6AWG (EX RT 5/7)

NOTE

- The Power Module is factory configured for single input, whereas both Normal AC and Bypass AC sources are identical, by means of jumper between L1 and L3.
- Jumper must be removed for separate Normal AC and Bypass AC sources (2 Mains) or with Frequency Converter application.
- Keep Manual Bypass Switch 7 at Normal position.
2. Setup and Installation

Proceed as follows:

1. For normal AC input, make connections to L1, L2, and L4 terminals only. No connections are required for Bypass AC input. Make connections to L5, L6 terminals for output.

 CAUTION Always connect the earth ground wire first. Jumper must be between L1 and L3. System is factory configured for 208 VAC output.

2. Attach I/O Box to the Power Module with three screws.

 Figure 2-12: Normal AC Input and Output Cables Installation.

Power Module I/O Box

![Diagram of Power Module I/O Box]

Simplified Connection Diagram

![Diagram of Simplified Connection Diagram]
2.7.2 Connecting EX RT Transformer Module

Part number 86211/86311
This module is to provide isolated 120/208/240 VAC outputs to the protected loads.

Figure 2-13: View of EX RT Transformer Module connected downstream for 120/208/240 Vac outputs (shown with one EXB).

WARNING To avoid overloading 120 VAC output windings, distribute loads evenly between Load 2 and Load 4 (on rear of Transformer Module) and between 120 VAC output terminals (Lb-N, La-N.)

Terminal Block Transformer Module Connection diagram (located on bottom of Transformer I/O Box)

Terminal Block capability: AWG 4 solid or stranded wire.

Simplified Connection Diagram

AC INPUT
UPSTREAM CIRCUIT BREAKER (NOT SUPPLIED)
Bypass AC
Normal AC
Transformer Module
To Load
2. Setup and Installation

2.7.3 Connections with Separate Normal and Bypass AC Sources (2 Mains)

CAUTION This connection requires isolation Transformer Module. Please visit our web site www.eaton.com or call (800) 356-5794.

Figure 2-14: Normal AC and Bypass AC inputs, Output Cables Installation, and Simplified Connection Diagram.

CAUTION Always connect the earth ground wire first.

Proceed as follows:
1. Remove the cover plate under the I/O Box. Loosen the terminal blocks L1 and L3, and remove the jumper.
2. Install Normal AC, Bypass AC and output cables as shown.
3. Reinstall the cover plate under the I/O Box with four screws.
4. Secure the I/O Box to the Power Module with three screws.

See Section 2.7.2 for connecting EX RT Transformer module, if applicable.

With separate Normal and Bypass AC inputs, supplied by separate sources.

![Diagram](image)

NOTE Please visit our web site www.eaton.com or call (800) 356-5794 for assistance with separate, normal AC, and bypass AC input support.

NOTE With parallel redundancy connection, two input transformers are needed for separate, normal, and AC bypass input. Please visit our web site www.eaton.com for details.
2. Setup and Installation

2.7.4 System Connections as Frequency Converter (without Bypass AC source)

Figure 2-15: Accessing Terminal Blocks for Input and Output Power Cables.

<table>
<thead>
<tr>
<th>CAUTION</th>
<th>Always connect the earth ground wire first.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Remove the cover plate under the I/O Box.</td>
<td></td>
</tr>
<tr>
<td>Remove the jumper connecting L3 and L1.</td>
<td></td>
</tr>
<tr>
<td>CAUTION</td>
<td>Removing the jumper will disable the Bypass AC source. Do not connect anything to the Bypass AC terminal block.</td>
</tr>
<tr>
<td>2. Refer to Section 2.7.1 to install Normal AC source and output wires per I/O Box Terminal diagram. Re-install the cover plate under the I/O Box.</td>
<td></td>
</tr>
<tr>
<td>3. Secure the I/O Box to Power Module with three screws.</td>
<td></td>
</tr>
</tbody>
</table>

See Section 2.7.2 for connecting EX RT Transformer Module, if necessary.

Power Module I/O Box

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L5</td>
<td>L2</td>
<td>L1</td>
</tr>
<tr>
<td></td>
<td>L1</td>
<td>L4</td>
</tr>
<tr>
<td></td>
<td>L4</td>
<td>L3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAUTION</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removing the jumper will disable the Bypass AC source. Do not connect anything to the Bypass AC terminal block.</td>
</tr>
</tbody>
</table>

1. CAUTION Always connect the earth ground wire first.
2. CAUTION Removing the jumper will disable the Bypass AC source. Do not connect anything to the Bypass AC terminal block.
3. Secure the I/O Box to Power Module with three screws.

See Section 2.7.2 for connecting EX RT Transformer Module, if necessary.
2. Setup and Installation

2.8 Connection of Battery Module EXB

1. Check that the battery circuit breaker (5) is OFF (“0”) position.
2. Connect the battery power cable to the connectors and of the Power and Battery Modules.
3. Connect the battery detection cable between connectors and of the Power and Battery Modules.

Figure 2-16: Rear view of Battery Module cable connections.
2. Setup and Installation

2.9 Connection of Optional CLA Module

1. Connect the battery power cable 40 and battery detection cable 42 (provided with the CLA Module) between the Power Module and the CLA Module.

2. Connect the DC Input of the CLA Module to high power battery cabinet.
 - DC Input Cable cross-section (not provided): maximum 4 AWG solid or stranded wire.

3. Connect the utility AC input to terminal blocks L1 and L2 of the CLA.
 - AC input cable cross-section (not provided): maximum 16 AWG solid or stranded wires.

Field wiring connections to terminal block shall be made using the following:
- No. 14 AWG, 60°C copper wires for AC inputs.
- No. 10 AWG, 75°C copper wires for DC inputs.

Figure 2-17: Rear view of CLA Module cable battery and AC input connections

Connection Diagram (inside CLA Module)

- 5 lb-in. for AC input terminals
- 18 lb-in. for DC input terminals

Terminal tightening torque:

Use 15 A DBL. Pole CB
(This page left blank intentionally)
3. Operation

3.0 Scope

Operation describes EX RT 5/7/11 systems characteristics of indicators and controls, modes and specifications and theory of operating the EX RT 5/7/11. The user procedures include performing software programming that will maintain smooth performance. Refer to Figure 1.6 for descriptions of circled numbers.

3.1 Initial Startup

1. Check that the manual bypass switch 7 is on Normal position.
2. Set the Normal AC source circuit breaker 8 to the ON position.
3. Set the battery circuit breaker 14 to the ON position.

The load is powered via the Bypass AC source, but not protected by the UPS. Batteries are recharging, an eight-hours recharge period is necessary to get full back-up time. LED 17 is ON.

Figure 3-1: Initial Startup Display.
3. Operation

3.2 UPS Personalization

WARNING Before changing items from Tables, 3-1, 3-2, 3-3, and 3-4, the UPS system must be turned OFF.

IMPORTANT If specific settings are required, it is recommended to enter the UPS personalization mode at this stage. It is possible to enter this mode through the front panel buttons or the Solution-Pac 2 software for Windows included in the EATON Solution-Pac 2 CD-ROM.

3.2.1 Accessing personalization with front panel buttons

- Press “scroll down” \(\text{21} \) and “scroll up” \(\text{22} \) function buttons together for more than 3 seconds.

- Press the function button \(\text{22} \) placed under the “ENT” word to enter the set up mode and follow the LCD messages using the buttons now defined as select keys. See Tables: 3-1, 3-2, 3-3, and 3-4 for settings.

Figure 3-2: Control Panel with scroll up and down buttons.
3. Operation

Table 3-1: Local Settings.

<table>
<thead>
<tr>
<th>Display</th>
<th>Factory setting</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>English</td>
<td>French, Spanish, German, Italian</td>
</tr>
<tr>
<td>Date/time format</td>
<td>International</td>
<td>US</td>
</tr>
<tr>
<td>Date/time change</td>
<td>(DD-MM-YYYY/HH:MM)</td>
<td>MM-DD-YYYY/HH:MM adjustable</td>
</tr>
<tr>
<td>Audible alarm</td>
<td>Quick beeps</td>
<td>Slow beeps</td>
</tr>
</tbody>
</table>

Table 3-2: Output Features.

<table>
<thead>
<tr>
<th>Display</th>
<th>Factory setting</th>
<th>Options</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>208 Volts AC (***)</td>
<td>200/208/220/230/240/250</td>
<td>Input voltage must be equal to output voltage</td>
</tr>
<tr>
<td>Frequency converter</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Bypass AC source disabled</td>
</tr>
<tr>
<td>Output frequency</td>
<td>Auto ranging</td>
<td>50/60 Hz</td>
<td>User selectable under frequency converter mode</td>
</tr>
<tr>
<td>ECO mode</td>
<td>Disabled</td>
<td>Enabled</td>
<td>See Section 3.4.2.</td>
</tr>
<tr>
<td>Hot standby</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Cascade (See Figure 3-3)</td>
</tr>
<tr>
<td>Operating mode</td>
<td>Industrial</td>
<td>IT Network (*)</td>
<td>(*) See Table 3-5.</td>
</tr>
<tr>
<td>Bypass</td>
<td>When bypass NOK</td>
<td>When bypass OK (**)</td>
<td>(*) See Table 3-5.</td>
</tr>
<tr>
<td>Transfer</td>
<td>Interrupt time</td>
<td>10 to 200 ms (by steps of 10 ms)</td>
<td>Interrupt time calibration during load transfer when Bypass AC source is out of tolerances</td>
</tr>
<tr>
<td></td>
<td>Overload level</td>
<td>102% 50/70%</td>
<td>() UPS will switch to Bypass AC Source if it is within the set tolerances. () See Table 3-5. (**) Input voltage must be equal to output voltage.</td>
</tr>
</tbody>
</table>

(*) : - Select “IT Network” for computer loads. Select “Industrial” for other applications or when there exists and absolute need for service continuity (with potential 10 msec. interrupt) when Bypass AC source is not within set tolerances.

See Table 3-5 for more details.

(**) UPS will switch to Bypass AC Source if it is within the set tolerances.

(***) Input voltage must be equal to output voltage.

Figure 3-3: Configuration used to provide cascade redundancy to critical loads.

Cascade redundancy configuration offers better protection to critical load, whereas the first UPS acts as the Bypass AC Source for the second UPS.
3. Operation

Table 3-3: ON/OFF Features.

<table>
<thead>
<tr>
<th>Display</th>
<th>Factory setting</th>
<th>Options</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold start</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Start on battery.</td>
</tr>
<tr>
<td>Forced reboot</td>
<td>Enabled</td>
<td>Disabled</td>
<td>UPS restarts automatically when normal AC source is restored.</td>
</tr>
<tr>
<td>Automatic restart</td>
<td>Enabled</td>
<td>Disabled</td>
<td>UPS restarts automatically when normal AC source is restored.</td>
</tr>
<tr>
<td>Sleep mode</td>
<td>Disabled</td>
<td>Enabled</td>
<td>Automatic shutdown on battery if output load level < 10%</td>
</tr>
<tr>
<td>Remote Command</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Enables shutdown or restart orders from software.</td>
</tr>
</tbody>
</table>

Table 3-4: Battery Features.

<table>
<thead>
<tr>
<th>Display</th>
<th>Factory setting</th>
<th>Options</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery test</td>
<td>Every week</td>
<td>No test/daily/monthly</td>
<td></td>
</tr>
<tr>
<td>Pre-Alarm</td>
<td>20%</td>
<td>0 to 100%</td>
<td>Low battery signal; 1% increment</td>
</tr>
<tr>
<td>Runtime choice</td>
<td>UPS reads # and type of Battery Modules connected</td>
<td>From 50 to 400 Ah</td>
<td>Requires CLA Module if using options (See Section 1.5.8)</td>
</tr>
<tr>
<td>Battery deep discharge protection</td>
<td>Enabled</td>
<td>Disabled</td>
<td>If disabled, loss of EATON warranty.</td>
</tr>
</tbody>
</table>
3.3 Information Technology IT Network and Industrial Operating Modes

Table 3-5: System Operation in IT Network and Industrial Modes.

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>IT Network mode</th>
<th>Industrial mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overload, and Bypass source in tolerance.</td>
<td>Load is transferred to Bypass AC source. UPS returns to normal mode if overload is removed.</td>
<td>Same as IT Network mode, but AC to the UPS does not return to is normal mode if overload removed.</td>
</tr>
<tr>
<td>Overload, and Bypass AC source not in tolerance.</td>
<td>The UPS shuts down and load is not transferred to Bypass AC source.</td>
<td>Load is transferred to Bypass AC source with 10 milli-seconds output break. The UPS does not return to normal mode if overload is removed.</td>
</tr>
<tr>
<td>Output short circuit and Bypass AC source in tolerance.</td>
<td>The load remains powered by the UPS. The UPS shuts down after 3 minutes if the short circuit remains.</td>
<td>Load is transferred to Bypass AC source. The UPS does not return to normal mode if the short circuit is removed.</td>
</tr>
<tr>
<td>Output short circuit and Bypass AC source not in tolerance.</td>
<td>The load remains powered by the UPS. The UPS shuts down after 3 minutes if the short circuit remains.</td>
<td>The load is transferred to Bypass AC source with 10 milliseconds output break. The UPS does not return to normal mode if the short circuit is removed.</td>
</tr>
</tbody>
</table>
3. Operation

3.3.1 UPS personalization through external software

Insert the Solution-Pac 2 CD ROM in your CD drive.

- At the first Navigator Screen, select “Installation” and follow the instructions to install Solution-Pac 2 for Windows.

- If nothing appears, launch startup.exe

- Then go to “Advanced settings” and “UPS settings”.

Please note that the Linux/Unix/MacOS versions of Personal Solution-Pac do not include this feature.

3.3.2 Final Startup sequence

Press the <ON> button more than 3 seconds.

- After UPS internal test sequence, the green LED (15) goes on.

CAUTION

During the startup, if the Bypass AC source is out of tolerance, there will be a 10 msec output interrupt.
3.4 Operating Modes

3.4.1 Normal (Double Conversion) Mode

This is the standard operating mode, set by the factory.

Two possible cases.

1. If Normal AC source available:
 - LED is ON.
 - The load is protected by the UPS.
 - Scroll down or scroll up function buttons allow you to read the UPS measurements (Normal AC source voltage, Bypass AC source voltage, operating mode, battery capacity and UPS Serial Number).

2. If Normal AC source not available:

 CAUTION Do not operate the Manual Bypass switch when the UPS is in Normal mode.

 - LED flashes.
 - LED is ON.
 - The audible alarm sounds intermittently.
 - The load is now powered by the UPS battery.
 - This display shows remaining back-up time.
3. Operation

3.4.2 ECO Mode

The main advantage of the ECO mode is that it reduces the consumption of electrical power by not running in the online mode. When this mode is selected, the system works as an offline UPS system, powered by Bypass source if Bypass source is inside user’s defined range. Outside this range, the UPS system will switch to online mode with 10ms interrupt.

Three possible cases:

1. If Normal AC source (Mains 1) and Bypass AC Source (Mains 2) are available:
 - LED are ON.
 The load is supplied with AC power but not protected in ECO mode.

2. If Normal AC source (Mains 1) is available, but Bypass AC source (Mains 2) is not available:
 - LED is ON.
 The audio alarm sounds intermittently.
 The load is automatically supplied in Normal mode via the Normal AC input.

3. Both Normal and Bypass AC sources not available or out of tolerance:
 - LED is ON.
 - LED is ON.
 The audio alarm sounds intermittently.
 The load is powered by the battery power from the UPS.
 The LCD display indicates the battery remaining back-up time.
3. Operation

3.5 Operation on Battery Power

Figure 3-6: Transfer, Threshold and End of back-up time.

3.5.1 Transfer to Battery Power

The load continues to be protected by the UPS when the Normal AC source is not available. Power is supplied by the battery.

There are three possible cases:

First Case: Operation on battery

15 LED is ON.
16 LED is ON.

The audio alarm beeps every 10 seconds.
- This indicate the load is supplied by the battery.
- The LCD display indicates the battery remaining back-up time.

Second Case: Low battery warning

15 LED is ON.
16 LED flashes.

The audio alarm beeps every 3 seconds.
- Low battery warning on LCD display. There is very little remaining battery back-up time. Close all applications because UPS automatic shutdown is pending.

Third Case: End of back-up time

15 LED is OFF.
16 LED is OFF.

The audio alarm is stopped.
3. Operation

3.6 Return of Normal AC source

After an outage, the UPS restarts automatically when AC power is restored (unless this function has been disabled via UPS personalization).

3.7 Shutdown

Figure 3-7: Shutdown Display, Circuit Breaker, and AC Source Switch.

1. Press the OFF button 20 more than 3 seconds.

CAUTION The load is no longer protected by the UPS. It is powered via the Bypass AC source. If the UPS is set in frequency converter mode, the load will not be powered.

If the Bypass AC source is out of tolerance, the UPS will generate a calibrated 10msec output interrupt.

2. Set the battery circuit breaker(s) 14 to the OFF position.

3. Set the Normal AC source circuit breaker 8 to the OFF position.

LED 17 is now OFF.

CAUTION Performing this step will disconnect power to the load.

4. For the complete shutdown of the UPS (no input and output power), the upstream circuit breaker (not included) should be set to the OFF position.
4. Maintenance

4.0 Scope

Maintenance includes a troubleshooting guide of symptoms and possible solutions, hot swapping the Power Module and Battery Module, and testing scenarios.

4.1 Troubleshooting

- If any of LEDs 17 or 18 is on, there is an operating anomaly or an alarm.
- Use “scroll up” or “scroll down” function button to reset the audible alarm.

Table 4-1: Troubleshooting Not Requiring EATON After-Sales Support.

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Indication</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED 17 is on, and Bypass AC source is present the LCD display shows BAD CONNECTION REWIRE AC NORMAL</td>
<td>AC source is not connected to the correct terminals.</td>
<td>Rewire correctly to the Normal AC source.</td>
</tr>
<tr>
<td>LED 17 is on, the LCD display shows: LOAD LEVEL XX kW / XX KVA</td>
<td>Load supplied by Bypass AC source.</td>
<td>Push the ON button for more than 3 seconds.</td>
</tr>
<tr>
<td>LED 17 is on, and Bypass AC source is present the LCD display shows: THERMAL OVERLOAD 1XX%</td>
<td>UPS overload</td>
<td>Check if any device is shorted or failed</td>
</tr>
<tr>
<td>LED 18 is on, the LCD display shows: CURRENT OVERLOAD</td>
<td>Short circuit conditions on output devices</td>
<td>Check if any load has shorted or failed</td>
</tr>
<tr>
<td>LED 15 is on, but the LCD display shows: BYPASS REVERSE REWIRE BYPASS</td>
<td>180° degree phase shift between bypass and normal AC source.</td>
<td>Check if Bypass source is correctly wired (in case of upstream transformer use).</td>
</tr>
<tr>
<td>Audible alarm is on, the LCD display shows: I/O BOX REMOVED</td>
<td>Input/Output box not installed correctly.</td>
<td>Check if the Input/Output box is correctly installed. See Section 2.7. Check for correct I/O Box.</td>
</tr>
</tbody>
</table>
4. Maintenance

Table 4-2: Troubleshooting Requiring EATON After-Sales Support.

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Indication</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED 17 and 18 are on, Bypass AC Source is present and audible alarm is on. The LCD display shows: xxx FAULT</td>
<td>Internal fault and transfer of load on Bypass AC source</td>
<td>Please visit www.eaton.com or call (800) 356-5794 for technical support</td>
</tr>
<tr>
<td>LED 17 is on, and audible alarm is on, the LCD display shows BATTERY FAULT</td>
<td>Battery fault during the battery test.</td>
<td>Follow the battery replacement procedure in Section 4.4.</td>
</tr>
<tr>
<td>LED 17 is on, the LCD display shows: SHUTDOWN STATIC SW FAILED</td>
<td>Static switch failure</td>
<td>Please visit www.eaton.com or call (800) 356-5794 for technical support</td>
</tr>
<tr>
<td>Audible alarm is on, the LCD display shows: BATTERY CHECK</td>
<td>Batteries may have exceeded their rated life period. Battery capacity is severely reduced.</td>
<td>Follow the battery replacement procedure in Section 4.4.</td>
</tr>
</tbody>
</table>

NOTE: To reset the alarm permanently, press both function buttons 17 and 22 for more than 3 seconds.
4.2 Hot Swapping the Power Module

This operation can be performed without interrupting the load.

Figure 4-1: Disconnecting the Power Module.

1. Stop the system with the OFF button (press more than 3 seconds). System is now powered by Bypass AC source.

 Check if UPS is on Bypass AC source by verifying that:

 LED is ON (If LED is not ON, do not turn the manual bypass and visit www.eaton.com or call (800) 356-5794.

2. Turn the manual bypass switch to the BYPASS position.

3. Switch the battery circuit breaker(s) to the OFF position.

 CAUTION Do not switch the Normal AC source circuit-breaker to the OFF position. Doing so will disconnect power to the load.

4. Loosen three screws to remove the Input/Output box.

5. Disconnect the battery cables and from the Power Module.

 The Power Module can be replaced.

 The connected equipment is powered by the Bypass AC source.
4. Maintenance

4.3 Re-Connecting the Power Module

This operation can be performed without interrupting the load.

Figure 4-2: Reconnect the Power Module.

1. Secure the Input/Output box using the three screws.
2. Reconnect the cables 40 and 42 to the Power Module.
3. Switch the battery circuit breaker(s) 14 to the ON position.
4. Check if Normal AC source circuit breaker 8 is on the ON position.
5. Check that the LED 17 is ON.
6. Turn the manual bypass switch from the BYPASS to the NORMAL position.
7. Follow initial start up sequence (See Section 3.1) in order to personalize the UPS.
8. Push the ON button 23 for more than 3 seconds.

The green LED 15 is ON, and the connected equipment is now protected by the UPS.
4.4 Hot Swapping the Battery Module

During the replacement of the Battery Module, it is imperative to use the same type and number of element as the original Battery Module provided with the UPS to maintain an identical level of performance and safety. In case of doubt, please refer to our web site at www.eaton.com or call (800) 356-5794.

Figure 4-3: Rear View of the Battery Module.

4.4.1 Disconnecting the Battery Module

1. Switch the battery circuit breaker(s) \(14\) to the OFF position.
2. Disconnect the cables \(40\) and \(42\) from the Power Module.

The Battery Module can be replaced. The connected equipment is powered by the UPS, but not protected.

It is also possible to replace the battery packs instead of Battery Module.

CAUTION Always replace both battery packs with new ones.

To remove battery pack:
1. First, switch the battery circuit breaker(s) to the OFF position.

See Section 2.4.2 and follow instructions for battery pack replacement.

4.4.2 Re-Connecting the Battery Module

1. Reconnect the battery cables \(40\) and \(42\) to the Power Module.
2. Switch the battery circuit breaker(s) \(14\) to the ON position.
5.0 Electrical Specifications

Electrical and Mechanical specifications for the EX RT 5/7/11.

5.1 System Input/Output Power Ratings

Table 5-1: EX RT 5/7/11 Voltages and Frequency Characteristics.

<table>
<thead>
<tr>
<th>Source</th>
<th>Voltage</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal AC Source</td>
<td>156 to 280 VAC</td>
<td>40 to 70 Hz</td>
</tr>
<tr>
<td>Bypass AC Source</td>
<td>160 to 242 VAC*</td>
<td>58 to 62 Hz**</td>
</tr>
<tr>
<td>Load Output</td>
<td>200/208/220/230/240/250 VAC (120/208/240 Vac are possible with transformer module)</td>
<td>50/60 Hz autoranging (or frequency converter)</td>
</tr>
</tbody>
</table>

(*): depends on output voltage setting, can be modified by software.
(**): set to +/- 4% by default, (1, 2, 4, 8% are possible values), can be modified by software.

5.2 System Overload Characteristics

Figure 5-1: Power Supplied as a Function of Input Voltage (Left), and Permissible UPS Overloads as a Function of Time (Right).
5. Appendix

5.3 System Back-Up Characteristics

Table 5-2: Back-Up Time (In Minutes).

<table>
<thead>
<tr>
<th>11 kVA With 9 Ah Battery Modules:</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>70%</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>90</td>
<td>40</td>
<td>25</td>
<td>18</td>
<td>14</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Std + 1 EX RT EXB</td>
<td>191</td>
<td>93</td>
<td>61</td>
<td>43</td>
<td>30</td>
<td>24</td>
<td>20</td>
<td>17</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>Std + 2 EX RT EXB</td>
<td>293</td>
<td>143</td>
<td>96</td>
<td>71</td>
<td>53</td>
<td>44</td>
<td>34</td>
<td>27</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>Std + 3 EX RT EXB</td>
<td>392</td>
<td>199</td>
<td>135</td>
<td>99</td>
<td>84</td>
<td>60</td>
<td>51</td>
<td>43</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>Std + 4 EX RT EXB</td>
<td>525</td>
<td>261</td>
<td>172</td>
<td>120</td>
<td>102</td>
<td>86</td>
<td>67</td>
<td>56</td>
<td>48</td>
<td>42</td>
</tr>
<tr>
<td>Std + 5 EX RT EXB</td>
<td>637</td>
<td>312</td>
<td>201</td>
<td>142</td>
<td>113</td>
<td>102</td>
<td>87</td>
<td>68</td>
<td>60</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 kVA With 7 Ah Battery Modules:</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>70%</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>121</td>
<td>57</td>
<td>37</td>
<td>28</td>
<td>21</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Std + 1 EX RT EXB</td>
<td>266</td>
<td>125</td>
<td>80</td>
<td>61</td>
<td>53</td>
<td>37</td>
<td>30</td>
<td>24</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Std + 2 EX RT EXB</td>
<td>447</td>
<td>203</td>
<td>124</td>
<td>101</td>
<td>83</td>
<td>66</td>
<td>55</td>
<td>45</td>
<td>38</td>
<td>32</td>
</tr>
<tr>
<td>Std + 3 EX RT EXB</td>
<td>578</td>
<td>244</td>
<td>185</td>
<td>128</td>
<td>108</td>
<td>90</td>
<td>75</td>
<td>61</td>
<td>53</td>
<td>45</td>
</tr>
<tr>
<td>Std + 4 EX RT EXB</td>
<td>756</td>
<td>364</td>
<td>245</td>
<td>169</td>
<td>132</td>
<td>110</td>
<td>98</td>
<td>77</td>
<td>69</td>
<td>57</td>
</tr>
<tr>
<td>Std + 5 EX RT EXB</td>
<td>889</td>
<td>453</td>
<td>287</td>
<td>232</td>
<td>164</td>
<td>133</td>
<td>118</td>
<td>102</td>
<td>86</td>
<td>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 kVA (US Model Only) with 7 Ah Battery Modules:</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>70%</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>170</td>
<td>91</td>
<td>49</td>
<td>33</td>
<td>25</td>
<td>21</td>
<td>16</td>
<td>13</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Std + 1 EX RT EXB</td>
<td>358</td>
<td>170</td>
<td>110</td>
<td>84</td>
<td>60</td>
<td>46</td>
<td>39</td>
<td>31</td>
<td>27</td>
<td>25</td>
</tr>
<tr>
<td>Std + 2 EX RT EXB</td>
<td>540</td>
<td>260</td>
<td>170</td>
<td>120</td>
<td>100</td>
<td>75</td>
<td>64</td>
<td>57</td>
<td>52</td>
<td>45</td>
</tr>
<tr>
<td>Std + 3 EX RT EXB</td>
<td>740</td>
<td>355</td>
<td>240</td>
<td>170</td>
<td>122</td>
<td>110</td>
<td>95</td>
<td>84</td>
<td>68</td>
<td>60</td>
</tr>
<tr>
<td>Std + 4 EX RT EXB</td>
<td>892</td>
<td>505</td>
<td>290</td>
<td>235</td>
<td>170</td>
<td>135</td>
<td>119</td>
<td>105</td>
<td>92</td>
<td>84</td>
</tr>
<tr>
<td>Std + 5 EX RT EXB</td>
<td>1220</td>
<td>540</td>
<td>355</td>
<td>260</td>
<td>225</td>
<td>170</td>
<td>140</td>
<td>120</td>
<td>110</td>
<td>100</td>
</tr>
</tbody>
</table>

5.4 System Short Circuit Protection

Short circuit current provided by EX RT 5/7/11 in normal or battery mode:
EX RT 5/7 110 A for 80 ms
EX RT 11 150 A for 80 ms

5.5 Accessories Electrical Characteristics

EX RT Transformer Module
- Nominal power: 11 kVA, 7 kVA
- Nominal current: 63 A, 35 A
- Input voltage: 208-240 Vac
- Output Voltage: 120/208/240 Vac
- Frequency: 50/60 Hz ±10%
- Isolation (EN 61558-1-2-4): 3.75 kV / 5 M ohms
- Operating temperature: From 0° to +40°C
- Max. operating rel. humidity: 95%
- Derating/altitude: Pn-10% > 1000 m

EX RT CLA Module
- AC input voltage: 156-280 Volts AC
- Input frequency: 40-70 Hz
- Battery charge current: 6 A DC
Appendix

Table 5-3: Battery Recharge Time to Recover 90% of the Rated Back-Up Time After Discharge at Full Load.

<table>
<thead>
<tr>
<th></th>
<th>Configuration for 2 hours back-up time</th>
<th>Configuration for 4 hours back-up time</th>
<th>Configuration for 8 hours back-up time</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX RT 5</td>
<td>7 hours</td>
<td>15 hours</td>
<td>24 hours</td>
</tr>
<tr>
<td>EX RT 7</td>
<td>5 hours</td>
<td>12 hours</td>
<td>20 hours</td>
</tr>
<tr>
<td>EX RT 11</td>
<td>7 hours</td>
<td>15 hours</td>
<td>24 hours</td>
</tr>
</tbody>
</table>

Table 5-4: Efficiency On-line (RL Load) and Batteries Fully Charged.

<table>
<thead>
<tr>
<th>kVA / kW</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
<th>Output load percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 kVA / 4 kWatts</td>
<td>90</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>Output: 220 / 230 / 240 Volts</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>90</td>
<td>91</td>
<td>91</td>
<td>Output: 200 / 208 / 250 Volts</td>
</tr>
<tr>
<td>7 kVA / 4.9 kWatts</td>
<td>90</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>Output: 220 / 230 / 240 Volts</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>90</td>
<td>91</td>
<td>90</td>
<td>Output: 200 / 208 / 250 Volts</td>
</tr>
<tr>
<td>11 kVA / 8 kWatts</td>
<td>90</td>
<td>91</td>
<td>90</td>
<td>90</td>
<td>Output: 220 / 230 / 240 Volts</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>90</td>
<td>90</td>
<td>89</td>
<td>Output: 200 / 208 / 250 Volts</td>
</tr>
</tbody>
</table>

Table 5-5: Efficiency On-Line (RCD Load) and Batteries Fully Charged.

<table>
<thead>
<tr>
<th>kVA / kW</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
<th>Output load percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 kVA / 4 kWatts</td>
<td>90</td>
<td>91</td>
<td>91</td>
<td>92</td>
<td>Output: 220 / 230 / 240 Volts</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>Output: 200 / 208 / 250 Volts</td>
</tr>
<tr>
<td>7 kVA / 4.9 kWatts</td>
<td>90</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>Output: 220 / 230 / 240 Volts</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>91</td>
<td>91</td>
<td>91</td>
<td>Output: 200 / 208 / 250 Volts</td>
</tr>
<tr>
<td>11 kVA / 8 kWatts</td>
<td>90</td>
<td>91</td>
<td>90</td>
<td>90</td>
<td>Output: 220 / 230 / 240 Volts</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>91</td>
<td>90</td>
<td>89</td>
<td>Output: 200 / 208 / 250 Volts</td>
</tr>
</tbody>
</table>

Table 5-6: Efficiency on Battery (RCD Load).

<table>
<thead>
<tr>
<th>kVA / kW</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
<th>Output load percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 kVA / 4 kWatts</td>
<td>87</td>
<td>89</td>
<td>89</td>
<td>88</td>
<td>Output: 220 / 230 / 240 Volts</td>
</tr>
<tr>
<td></td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>88</td>
<td>Output: 200 / 208 / 250 Volts</td>
</tr>
<tr>
<td>7 kVA / 4.9 kWatts</td>
<td>87</td>
<td>89</td>
<td>89</td>
<td>88</td>
<td>Output: 220 / 230 / 240 Volts</td>
</tr>
<tr>
<td></td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>88</td>
<td>Output: 200 / 208 / 250 Volts</td>
</tr>
<tr>
<td>11 kVA / 8 kWatts</td>
<td>89</td>
<td>90</td>
<td>89</td>
<td>87</td>
<td>Output: 220 / 230 / 240 Volts</td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>90</td>
<td>89</td>
<td>88</td>
<td>Output: 200 / 208 / 250 Volts</td>
</tr>
</tbody>
</table>
5. Appendix

Table 5-7: Efficiency on ECO Mode (All Kinds of Load) and Batteries Fully Charged.

<table>
<thead>
<tr>
<th>kVA / kW</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
<th>Output load percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 kVA / 4 kWatts</td>
<td>96</td>
<td>97</td>
<td>96</td>
<td>97</td>
<td>Output: 220 / 230 / 240 Volts</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>Output: 200 / 208 / 250 Volts</td>
</tr>
<tr>
<td>7 kVA / 4.9 kWatts</td>
<td>96</td>
<td>97</td>
<td>96</td>
<td>97</td>
<td>Output: 220 / 230 / 240 Volts</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>Output: 200 / 208 / 250 Volts</td>
</tr>
<tr>
<td>11 kVA / 8 kWatts</td>
<td>96</td>
<td>97</td>
<td>96</td>
<td>97</td>
<td>Output: 220 / 230 / 240 Volts</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>Output: 200 / 208 / 250 Volts</td>
</tr>
</tbody>
</table>

5.6 Heat Rejection

Table 5-8: Full Load Heat Rejection in BTUs/hr.

<table>
<thead>
<tr>
<th>System</th>
<th>Operation Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On-line</td>
</tr>
<tr>
<td>5 kVA</td>
<td>1350</td>
</tr>
<tr>
<td>7 kVA</td>
<td>1654</td>
</tr>
<tr>
<td>11 kVA</td>
<td>3033</td>
</tr>
</tbody>
</table>

5.7 Environmental Characteristics

- The operating temperature is 0 to 40°C (8 hours at 45°C), however optimum operation is within the +20 to +25°C range and at 5-95% humidity, non-condensing at altitude up to 3280 ft without de-rating.
- The storage temperature: -20 to 40°C. Humidity: 5-95%, non-condensing.
- Battery back-up time is adversely affected by high and low temperatures. It is significantly reduced at temperatures under 10°C. Above 25°C, battery service life is cut in half every 10°C. Above 40°C, battery manufacturers no longer guarantee operation due to the risk of thermal runaway.
- Air enters through the front air vent grills and exits through the back. Always keep air vent grills unobstructed.
Technical Support and Product Services

Technical questions? If you encounter a problem while following the instructions in this manual, or have questions about the operation, repair, or servicing of your equipment, please visit our web site www.eaton.com for complete service information.

To insure that your questions are correctly answered, please obtain the part number, assembly number, and serial number of the unit and include them in any discussions or correspondence.

Part Number: ___
Assembly Number: __
Serial number: __

Who To Contact

For Technical Support, Customer Care Center, Customer FAQ please visit our website: www.eaton.com

Scheduling Field Service Engineer Support

Scheduling of the EATON Field Service Engineers typically should be done 7 to 10 days before they are required on-site. If the startup of the UPS is critical to maintaining your schedule, please contact EATON, to insure a safe installation and start-up that will maintain the EATON warranty and insure smooth performance.

Return Policy for Single Phase Products (RMA)

Should you require factory service for your equipment, contact EATON Customer Care Center and obtain a Return Materials Authorization (RMA) prior to shipping your unit. Never ship equipment to EATON without first obtaining an RMA number.

For further details please visit our website: www.eaton.com

Date: ___
RMA Number: __
Contact Name: __
5.8 Glossary

<table>
<thead>
<tr>
<th>Term used</th>
<th>Definition/Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>@</td>
<td>At.</td>
</tr>
<tr>
<td>/</td>
<td>And/or.</td>
</tr>
<tr>
<td>+/-</td>
<td>Plus or Minus.</td>
</tr>
<tr>
<td>≤</td>
<td>Equal to or less than.</td>
</tr>
<tr>
<td>#</td>
<td>Number.</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius.</td>
</tr>
<tr>
<td>°F</td>
<td>Degree Fahrenheit.</td>
</tr>
<tr>
<td>Ø</td>
<td>Phase angle.</td>
</tr>
<tr>
<td>Ω</td>
<td>Ohm; unit of resistance.</td>
</tr>
<tr>
<td>®</td>
<td>Trade Mark.</td>
</tr>
<tr>
<td>2nd</td>
<td>Second.</td>
</tr>
<tr>
<td>AC or ac</td>
<td>Alternating current, also implies root-mean-square (rms).</td>
</tr>
<tr>
<td>Ambient Temp.</td>
<td>Temperature of surrounding air.</td>
</tr>
<tr>
<td>Ambient noise</td>
<td>Acoustical noise of surrounding environment.</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standard Institute.</td>
</tr>
<tr>
<td>AWG</td>
<td>American Wire Gauge.</td>
</tr>
<tr>
<td>Breaker</td>
<td>Electrical circuit interrupter.</td>
</tr>
<tr>
<td>BTU or Btu</td>
<td>British thermal unit. Defined as the amount of heat required to raise the temperature of one pound of water by 1°F.</td>
</tr>
<tr>
<td>Carrier</td>
<td>The company or individual responsible for delivering goods from one location to another.</td>
</tr>
<tr>
<td>C</td>
<td>Common.</td>
</tr>
<tr>
<td>CB</td>
<td>Circuit breaker.</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter.</td>
</tr>
<tr>
<td>Conduit</td>
<td>A flexible or rigid tube enclosing electrical conductors.</td>
</tr>
<tr>
<td>Current rating</td>
<td>The maximum current that a conductor or equipment can carry reliably without damage.</td>
</tr>
<tr>
<td>dBA</td>
<td>Decibel Adjusted.</td>
</tr>
</tbody>
</table>
5. Appendix

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dBnC</td>
<td>Decibel above reference noise.</td>
</tr>
<tr>
<td>DC or dc</td>
<td>Direct current, or voltage.</td>
</tr>
<tr>
<td>Earth ground</td>
<td>A ground circuit that has contact with the earth.</td>
</tr>
<tr>
<td>Electrician</td>
<td>Refers to an installation electrician qualified to install heavy-duty electrical components in accordance with local codes and regulations. Not necessarily qualified to maintain or repair electrical or electronic equipment.</td>
</tr>
<tr>
<td>FET</td>
<td>Field effect transistor.</td>
</tr>
<tr>
<td>Freq.</td>
<td>Frequency.</td>
</tr>
<tr>
<td>Frequency slew rate</td>
<td>The change in frequency per unit of time. Given in term of Hz per second (Hz/sec.).</td>
</tr>
<tr>
<td>GND</td>
<td>Ground (safety).</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz, frequency measurement unit, 1Hz is one cycle per second.</td>
</tr>
<tr>
<td>I</td>
<td>Current.</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission.</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronic Engineers.</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated gate bipolar transistors.</td>
</tr>
<tr>
<td>Input branch circuit</td>
<td>The input circuit from the building power panel to the equipment.</td>
</tr>
<tr>
<td>Inverter</td>
<td>An electrical circuit that generates an AC voltage source from a DC voltage source.</td>
</tr>
<tr>
<td>Inverter mode</td>
<td>See “on-line” mode.</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output.</td>
</tr>
<tr>
<td>I/T or IT</td>
<td>Information Technology.</td>
</tr>
<tr>
<td>kVA</td>
<td>KiloVolt-Ampere; is equal to 1000 Volt-Ampere.</td>
</tr>
<tr>
<td>L</td>
<td>Line.</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid-Crystal Display unit.</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode.</td>
</tr>
<tr>
<td>Mains or Mains 1</td>
<td>Main AC input source.</td>
</tr>
<tr>
<td>Mains 2</td>
<td>Bypass AC input source.</td>
</tr>
<tr>
<td>mA</td>
<td>Milliampere.</td>
</tr>
<tr>
<td>MAX.</td>
<td>Maximum.</td>
</tr>
<tr>
<td>MCM</td>
<td>Thousand circular mil; standard wire sizes for multiple stranded conductors over 4/0 AWG in diameter. M is from Roman numerical system indicating 1000.</td>
</tr>
<tr>
<td>N</td>
<td>Neutral.</td>
</tr>
<tr>
<td>NC</td>
<td>Normally closed.</td>
</tr>
<tr>
<td>NEC</td>
<td>National Electrical Code.</td>
</tr>
<tr>
<td>NO</td>
<td>Normally open.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Agency.</td>
</tr>
<tr>
<td>PCA</td>
<td>Printed circuit assembly.</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed circuit board.</td>
</tr>
<tr>
<td>PN</td>
<td>Part number.</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation.</td>
</tr>
<tr>
<td>RCD Load</td>
<td>Load consists of resistor, capacitor and diode. A computer with switched mode power supply is considered a RCD load.</td>
</tr>
<tr>
<td>RL Load</td>
<td>Load consists of resistor, and inductor. A fan or a drill is considered a RL load.</td>
</tr>
<tr>
<td>SCR</td>
<td>Silicon controlled rectifier.</td>
</tr>
<tr>
<td>Shipping damage</td>
<td>Any damage done to an article while it is in transit.</td>
</tr>
<tr>
<td>SPDT</td>
<td>Single Pole Double Throw.</td>
</tr>
<tr>
<td>Static Transfer</td>
<td>An solid state switching mechanism electronically controlled to pass AC power directly from the utility to an output load.</td>
</tr>
<tr>
<td>Technician</td>
<td>Refers to an electronic technician qualified to maintain and repair electronic equipment. Not necessarily qualified to install electrical wiring.</td>
</tr>
<tr>
<td>V</td>
<td>Volts.</td>
</tr>
<tr>
<td>VA</td>
<td>Volt amperes.</td>
</tr>
<tr>
<td>VA</td>
<td>Volt-amps, unit for apparent power measurement, equal V x I.</td>
</tr>
<tr>
<td>VAC or Vac</td>
<td>Voltage of AC type.</td>
</tr>
<tr>
<td>VDC or Vdc</td>
<td>Voltage of DC type.</td>
</tr>
<tr>
<td>ve</td>
<td>Battery voltage.</td>
</tr>
<tr>
<td>Via</td>
<td>By way of.</td>
</tr>
</tbody>
</table>
Use this form to report any errors, omissions, or other problems you have experienced, or to order additional hardcopies of this document. A free copy of this document may be downloaded from the proprietary EATON Rep Web site. Please contact your EATON Representative for assistance.

NAME ___

COMPANY ___

STREET ADDRESS __

CITY ____________________________ STATE _______________ ZIP __________________

I would like to order______ (quantity @ $50.00 each) additional copies of the:

Product Name

Installation and User Manual

86-86000-00 B02

I would like to report the following problems with this document:

__

__

__
